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Abstract— We address the problem of face video retrieval in
TV-series, which searches video clips based on the presence
of specific character, given one face track of his/her. This is
tremendously challenging because on one hand, faces in TV-series
are captured in largely uncontrolled conditions with complex
appearance variations, and on the other hand, retrieval task
typically needs efficient representation with low time and space
complexity. To handle this problem, we propose a compact and
discriminative representation for the huge body of video data,
named compact video code (CVC). Our method first models the
face track by its sample (i.e., frame) covariance matrix to capture
the video data variations in a statistical manner. To incorpo-
rate discriminative information and obtain more compact video
signature suitable for retrieval, the high-dimensional covariance
representation is further encoded as a much lower dimensional
binary vector, which finally yields the proposed CVC. Specifically,
each bit of the code, i.e., each dimension of the binary vector,
is produced via supervised learning in a max margin framework,
which aims to make a balance between the discriminability and
stability of the code. Besides, we further extend the descriptive
granularity of covariance matrix from traditional pixel-level to
more general patch-level, and proceed to propose a novel hier-
archical video representation named spatial pyramid covariance
along with a fast calculation method. Face retrieval experiments
on two challenging TV-series video databases, i.e., the Big Bang
Theory and Prison Break, demonstrate the competitiveness of
the proposed CVC over the state-of-the-art retrieval methods.
In addition, as a general video matching algorithm, CVC is
also evaluated in traditional video face recognition task on a
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Fig. 1. Illustration of the proposed method. Given a face track of one
character as query, we extract the proposed Compact Video Code (CVC) to
represent it and use Hamming distance to retrieve face tracks of the specific
character in database, which are also encoded in the form of CVC.

standard Internet database, i.e., YouTube Celebrities, showing its
quite promising performance by using an extremely compact code
with only 128 bits.

Index Terms— Face video retrieval, covariance matrix, spatial
pyramid covariance, compact video code, binary code learning.

I. INTRODUCTION

FACE video retrieval in general is to retrieve shots con-
taining particular person given one face track (i.e., faces

detected in consecutive frames that share a large enough
number of tracked points) of him/her [1]. It is a promising
research direction with increasing demands, especially in the
era of Internet multimedia considering huge body of video
data (e.g., various types of videos can be found on the
video sharing sites like YouTube, such as movies, newscasts,
sitcoms, sports, commercials, and homemade videos, etc).
Finding a specific person in videos is crucial to understand and
retrieve videos. There are a wide range of applications relying
on it, for example: ‘intelligent fast-forwards’ - where the
video jumps to the next shot containing the specific character;
retrieval of all the shots containing a particular family member
from thousands of short videos captured by a digital camera;
and rapid locating and tracking of suspects from masses of
city surveillance videos. In this paper, we mainly focus on the
problem of face video retrieval in TV-series with character’s
one face track as query, as depicted in Fig. 1.

The key technique for face video retrieval is face recog-
nition which has long been established as one of the most
active research areas in computer vision. However, face video
retrieval has its unique features compared with traditional face
recognition tasks. Specifically, different from traditional image
based face recognition, video provides rich and redundant
information, which can be exploited to resolve the inherent
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ambiguities of still image based recognition like sensitivity
to variations caused by lighting, pose, resolution and occlu-
sion [1]. However, how to effectively utilize the rich informa-
tion of video needs to be considered adequately. In this paper,
we utilize the second-order statistic covariance matrix which
has been proved natural and efficient for front-end video rep-
resentation [2]–[4]. Moreover, to overcome the shortcoming of
raw covariance matrix, i.e., high dimensionality and alignment
sensitivity, we extend the descriptive granularity of covariance
matrix (will be written as covariance henceforth, for short)
from traditional pixel-level to more general patch-level with a
fast calculation method based on theoretical derivation. On this
basis, we proceed to propose a complete multi-granularity
video representation by organizing a series of different para-
meterized patch-level covariances in a hierarchical manner
named by us as Spatial Pyramid Covariance (SPC). Another
unique feature of face video retrieval is the strong demand for
compact and discriminative video representation for both time
fast and space saving search. Despite covariance has a certain
degree of discrimination ability due to its modeling of video
data variations, it does not involve any supervised information
which is crucial for retrieval. Besides, it is not compact enough
due to its high dimension for fast retrieval especially when
the database is very large. To this end, we further encode
the covariance-based video representation to Compact Video
Code (CVC) as the final video signature, which comes in
the form of a much lower-dimensional binary code, where
each bit of the code is learned by explicitly optimizing for
discrimination in a max margin framework. By doing this
discriminability and stability are considered jointly.

To verify the effectiveness of the proposed method, we con-
duct retrieval experiments on two challenging TV-series
databases, i.e., the Big Bang Theory and Prison Break.
Experimental results demonstrate the superiority of the pro-
posed CVC over state-of-the-art retrieval methods. In addi-
tion, the proposed method is also evaluated in traditional
video face recognition task on a standard Internet benchmark,
i.e., YouTube Celebrities [5]. It is shown that, as a general
video matching algorithm, the proposed method shows quite
promising performance by using a rather compact code with
only 128 bits.

The rest of this paper is organized as follows: Section II
discusses the related work of the proposed method. Then
Section III describes the covariance-based video modeling as
well as the metrics of covariance. Next, Section IV presents the
binary code learning framework along with two constraints,
i.e., discriminability and stability. After that, Section V exhaus-
tively evaluates the proposed method on different video classi-
fication tasks. Finally, we end with a summary of conclusions
and future work in Section VI.

II. RELATED WORK

A. Video-Related Face Applications

Recent years have witnessed more and more studies
on video-related face applications [6]–[15], especially
the entertainment videos, e.g., films, TV-series. For
instance, Everingham et al. [7] studied the problem of

labelling appearances of characters in TV-series and films;
Arandjelović and Cipolla [8] addressed the problem of
automatically determining the cast of feature-length film;
Cinbis et al. [9] investigated the identification problem for
face tracks of TV-series; Parkhi et al. [13] dealt with the
problem of video face verification with a compact and
discriminative vector representation; Sivic et al. [6] attempted
to retrieve shots containing particular person in video using
an imaged face as query; Li et al. [14] extended video-video
retrieval to a cross-modality scenario, i.e., face video retrieval
with image query, and modeled such problem as a hetero-
geneous hash learning cross Euclidean space (still images)
and Riemannian manifold (videos); and Dong et al. [15]
developed a new deep convolutional neural network to learn
discriminative and compact binary face representations for
face video retrieval, and the network integrated feature
extraction and hash learning into a unified optimization
framework for the optimal compatibility of feature extractor
and hash functions. More recently, an increasing number of
peripheral information are utilized for performance boosting,
e.g., Ortiz et al. [11] studied the problem of face track
identification using a collected large dictionary of still face
images for assist; and Bäuml et al. [10] took advantage
of subtitles and fan transcripts to implement character
identification in TV-series. While most of such previous works
[6]–[13] have been devoted to an end-to-end system, including
those preprocessing stages such as shot boundary detection,
face detection, facial landmark localization, tracking, and face
track extraction, etc., it is generally believed that the pivotal
technical components of video-related face applications
(especially face video retrieval) lie in the video data modeling
and the subsequent discriminant and compact representation
learning, which are the exact topics of this paper.

B. Video Modeling

As video is comprised of frames (i.e., images), in prac-
tice it is often treated as image set. Compared with treat-
ing video as separated frames and processing it frame by
frame, holistic modeling methods [2]–[4], [16]–[21] gradually
exhibit their advantages of not only compact representation
but also superior performance, after the pioneering work of
Yamaguchi et al. [16]. One class of prevalent methods is to
use subspace learning techniques to account for the image set
variability globally either by a single linear subspace [17],
or by a more sophisticated manifold [18], [19]. However,
the linear subspace modeling cannot well accommodate the
case in real world when the set is of small size but has complex
data variations. As also indicated in [20], linear subspace
modeling has the limitation that it incorporates only relatively
weak information, i.e., subspace angles, about the location
and boundary of instances in the input space. Another class
of prevalent methods is based on affine subspace [20], [21],
where image set is approximated with a more theoretically
principled affine subspace model and closest virtual points
are matched via a convex optimization. While intra-class
variations can be effectively handled, such methods are still
susceptible to the presence of outliers and have relatively high
computational cost due to their inherent single sample-based
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matching mechanism [2], [17]. More recently, covariance-
based methods [2]–[4] show their superiority for image set
modeling. As the raw second-order statistic of image set,
covariance which lies on a Riemannian manifold provides
a natural representation for any set size and any image
feature, and therefore characterizes the complicated set struc-
ture more faithfully [2]–[4]. Also, as indicated in [2], linear
subspace models originate from an eigen-decomposition of
the covariance while discarding some important information.
Taking such into consideration, we resort to covariance for
representing videos in this paper.

C. Binary Code Learning

While above methods have gained successes in image
set classification, high-dimensional representation limits their
applicability to the video retrieval scenario which typically
requires not only accurate but also compact and efficient
representation of video for fast search. To obtain compact
representation, binary code (a.k.a., hash/hashing code) is a
natural solution, as it is quite efficient to match with sub-
linear time complexity, and is able to index a huge size of
data with very short code length [22]. The basic idea of
hashing is to learn similarity preserving binary codes for data
representation [23], i.e., each data point will be hashed into a
compact binary string, and similar data points in the original
feature space should be hashed into close points in the binary
code space (always Hamming space).

Existing hashing methods [23]–[38] can be roughly
divided into two types, i.e., data independent and data
dependent. Representative data independent hashing methods
include the pioneering Locality-Sensitive Hashing (LSH) [24]
and its variants [25], [26], and Shift-Invariant Kernel
Hashing (SIKH) [27]. LSH and its variants utilize random
projections as hash functions which are independent from
training data, and slightly different from LSH, SIKH utilizes
a shifted cosine function to generate hash codes. Due to their
inherent property that the original metrics are asymptotically
preserved in the target Hamming space with increasing code
length, LSH-related methods usually achieve satisfactory per-
formance at the expense of long codes. To overcome such
disadvantage, another type, i.e., data dependent methods, have
come into being with their hash functions being learned
from training data. Representative methods include Spectral
Hashing (SH) [28], and ITerative Quantization (ITQ) [29], etc.
SH is calculated by thresholding a subset of eigenvectors of
the Laplacian of the similarity graph, ITQ is implemented by
iteratively minimizing the quantization error of projecting data
from the original feature space to the target Hamming space.

Most recently, an increasing number of methods attempt
to integrate discriminant supervised information into the
hash functions learning for performance boosting, and these
form a sub-branch of data dependent hashing meth-
ods, a.k.a., supervised hashing methods. Representative
methods include Semi-Supervised Hashing (SSH) [30],
Discriminative Binary Code (DBC) [31], Kernel-based Super-
vised Hashing (KSH) [32], Supervised ITerative Quantiza-
tion (SITQ) [29], and Minimal Loss Hashing (MLH) [36].

Fig. 2. Types of hashing methods.

Technically, SSH formulates its learning as minimizing empir-
ical error on the labeled data while maximizing variance and
independence of hash bits over the labeled and unlabeled
data; DBC can be used for visual attribute discovery by
jointly optimizing the discriminability and predictability of
hash codes; KSH makes use of kernel-based hash functions
by dexterously utilizing the algebraic equivalence between
a Hamming distance and a code inner product; SITQ is
implemented by simply replacing the Principal Component
Analysis (PCA) [39] preprocessing in ITQ with Canonical
Correlation Analysis (CCA) [40], and MLH as a general
purpose hashing method is appropriate for both unsupervised
and supervised scenarios by formulating the approach to learn
similarity-preserving binary codes based on structured predic-
tion with latent variables and a hinge-like loss function, and the
learning algorithm of MLH is online, efficient, and scales
well to large code lengths. We summarize the above types
of hashing methods in Fig. 2.

III. VIDEO MODELING

As mentioned in Section I, we decompose our task into
two steps, i.e., the front-end video modeling and the back-end
binary code learning. In this section, we focus on the first
step by organizing it as follows: in Section III-A, we briefly
introduce the classical sample covariance for video modeling;
and then we extend the pixel-level covariance to patch-level in
Section III-B and further to Spatial Pyramid Covariance (SPC)
in Section III-C; in the end of this section, metrics of covari-
ance are introduced in Section III-D.

A. Sample Covariance

Let F = [ f 1, f 2, · · · , f N ] be the data matrix of a face
track with N frames, where f k ∈ R

d denotes the kth frame
with d-dimensional representation. We represent the face track
with the d × d sample covariance:

C = 1

N − 1

N∑

k=1

( f k − f̄ )( f k − f̄ )T , (1)

where f̄ ∈ R
d is the mean representation of all frames.

The diagonal entries of the covariance C represent the variance
of each individual dimensionality of the frame representation,
and the off-diagonal entries are their respective correlations.

While it is rather simple to derive and compute, there exist
several advantages to model a face track with its sample
covariance: (a) as the raw second-order statistic of a set
of video frames, the covariance makes no assumption about
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Fig. 3. Illustration of (a) pixel-level and (b) patch-level covariance.

the set data distribution, compared with the early paramet-
ric modeling methods which seek to represent each face
track with some parametric distribution function, e.g., single
Gaussian [41] or Gaussian Mixture Models (GMM) [42],
thus providing a natural and flexible way to represent a face
track with any frame number and any frame representation;
(b) the covariance modeling shows stronger resistance to
outliers, since it is a statistic of all frames and noise-corrupting
elements are largely filtered out with an average filter during
covariance computation [2]–[4].

B. Pixel-Level Covariance to Patch-Level Covariance

Let’s define that the f k ∈ R
d in Eqn. (1) is the vectorization

of frame intensities, where d indicates the total number of
frame pixels. Therefore, C in Eqn. (1) is generally considered
as the pixel-level covariance (denoted by Cpix), i.e., ele-
ments in Cpix describe the correlations between individual
pixel. In this subsection, we propose to extend the traditional
pixel-level covariance to more general patch-level covariance.

To this end, we first rewrite the pixel-level covariance Cpix

in the element-wise form:

Cpix
i j = 1

N − 1

N∑

k=1

( f k
i − f̄i )( f k

j − f̄ j ), (2)

where f k
i ( f̄i ) is the i th element of f k ( f̄ ) corresponding

to the i th frame pixel. Inspired by [43], we then give the
definition of patch-level covariance as:

Cpat
pq = 1

N − 1

N∑

k=1

( f k
p − f̄p)

T ( f k
q − f̄q), (3)

where Cpat
pq describes the correlation between the pth and

the qth patches of the face track (please see Fig. 3 for
better understanding). f k

p and f̄p in Eqn. (3) are defined
as follows.

f k
p = [ f k

p1
, f k

p2
, · · · , f k

pn
]T , (4)

f̄p = [ f̄ p1, f̄ p2 , · · · , f̄ pn ]T , (5)

where n is the number of pixels within the pth (qth) patch
(of course, the pth and qth patches are required to have the
same size). Based on the above definitions, we further rewrite

Eqn. (3) as follows:

Cpat
pq = 1

N−1

N∑

k=1

( f k
p − f̄p)T ( f k

q − f̄q)

= 1

N−1

N∑

k=1

( f k
p

T
f k
q − f k

p
T

f̄q − f̄ T
p f k

q + f̄ T
p f̄q)

= 1

N−1

N∑

k=1

(

n∑

w=1

f k
pw

f k
qw
−

n∑

w=1

f k
pw

f̄qw−
n∑

w=1

f̄ pw f k
qw
+

n∑

w=1

f̄ pw f̄qw )

= 1

N−1

N∑

k=1

(

n∑

w=1

( f k
pw

f k
qw

− f k
pw

f̄qw − f̄ pw f k
qw

+ f̄ pw f̄qw))

=
n∑

w=1

(
1

N−1

N∑

k=1

( f k
pw

f k
qw

− f k
pw

f̄qw − f̄ pw f k
qw

+ f̄ pw f̄qw))

=
n∑

w=1

(
1

N−1

N∑

k=1

( f k
pw

− f̄ pw )( f k
qw

− f̄qw))

=
n∑

w=1

Cpix
pwqw . (6)

Here, a quite appealing result is observed that the patch-level
covariance Cpat can be treated as the sum-pooling form of
the pixel-level covariance Cpix. Moreover, compared with
the traditional pixel-level covariance, patch-based version has
several advantages as follows: (a) representation volume,
as illustrated in Fig. 3, by upgrading from pixel to patch,
the size of covariance drops from d × d to the more concise
d ′×d ′, where d and d ′ respectively denote the total number of
pixels and patches; (b) semantic interpretability, with appro-
priate patch size, patch-level covariance has the potential to
explicitly depict all kinds of correlations between facial com-
ponents (e.g., forehead, eyes, nose, mouth), whereas pixel-wise
correlations contain relatively weaker and ambiguous semantic
interpretation; (c) mis-alignment invariance, the sum-pooling
operation strengthens the robustness against mis-alignment,
which has always been regarded as an intractable noise for face
images. Based on these, patch-level covariance is expected
to admit a relatively wider range of application demands
compared with the pixel-level version.

Theoretically, the proposed patch-level covariance has the
potential to compatible with any off-the-shelf visual feature.
The only requirement is a reasonable definition of patches.
More specifically, the patches defined on low-level intensity
have the natural semantic correspondence to spatial regions.
Nevertheless, deep-based representation as a high-level feature
does not explicitly have the spatial region information. As a
consequence, we choose the raw intensity as entry level pro-
totype to illustrate the proposed model, and a straightforward
scheme to employ other feature is dividing the feature vector
at regular intervals to form patches.

C. Spatial Pyramid Covariance

Nevertheless, the biggest practical problem encountered
when using patch-level covariance is how to set an appropriate
patch size, and usually it is almost impossible to assign a
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Fig. 4. Illustration of constructing SPC. The leftmost black (1st ) layer is
the pixel-level covariance, the rightmost yellow (Lth ) layer is the patch-level
covariance with the maximal patch size, where d1 and dL denote the total
number of pixels and patches in corresponding layer respectively. Obviously,
from left to right, covariance has more concise volume and more explicit
semantic interpretability. Moreover, different layers are organized in a hierar-
chical multi-granularity manner.

general-purpose parameter for distinct scenarios. Such being
the case, we might consider whether it is possible to intelli-
gently combine a series of different parameterized patch-level
covariances by fully exploring the complementarity among
them. Inspired by the classical technique, Spatial Pyramid
Matching (SPM) [44], [45], we propose a novel hierarchical
multi-granularity video representation, named Spatial Pyramid
Covariance (SPC).

SPM is first explored by Grauman and Darrell [45] to
find an approximate correspondence between two feature sets,
and then extended by Lazebnik et al. [44] to the problem of
natural scene recognition. In particular, SPM is complemented
by subdividing an image and computing histograms of local
features at increasingly fine resolutions. Similar idea is adopted
in this work by integrating multiple layers of patch-level
covariance of different patch size as:

CSPC
i = {C1

i , C2
i , ..., C L

i }, (7)

where CSPC
i denotes the final SPC representation of the i th

instance, C l
i is the lth layer patch-level covariance (C1

i is
the fundamental pixel-level covariance, and it can be also
regarded as a special case of patch-level covariance with
1×1 patch size), and L is the total number of layers. Fig. 4
shows a toy example for better understanding. Although
such spatial pyramid structure may certainly result in a
higher-dimensional representation, it preserves complete video
information, i.e., from weak-semantic but subtle pixel-level
description to strong-semantic yet coarse patch-level descrip-
tion. In a nutshell, such multi-granularity structure effec-
tively encodes all kinds of appearance variations into a
unified model, and then naturally suits for complex video
representation.

D. Metrics of Covariance

It is well known that the nonsingular covariances,1 a.k.a.,
symmetric positive definite (SPD) matrices, do not lie in a

1For image set classification, it is often the case that the number of images
(frames) is less than the feature dimension, thus leading to the singularity of
the covariance. To tackle this singularity, a simple method is adding a small
perturbation to the covariance [2].

Euclidean space but on a Riemannian manifold M [46]–[48].
However, it is not trivial to design classifier on the manifold
since typical learning algorithms are devoted to operating
in Euclidean space. To handle such problem, Log-Euclidean
Distance (LED) [49] as a well-studied metric is utilized to
bridge the gap between Riemannian manifold and Euclidean
space:

dLED(Ci , C j ) = ∥∥log(Ci ) − log(C j )
∥∥

F , (8)

where Ci , C j are two d × d nonsingular covariances, log(·)
is the ordinary matrix logarithm operator, and ‖·‖F denotes
the matrix Frobenius norm. Let C = U

∑
UT be the eigen-

decomposition of SPD matrix C , its log is a symmetric matrix
and can be easily computed by

log(C) = U log(
∑

)UT , (9)

where log(
∑

) is the diagonal matrix of the eigenvalue loga-
rithms. By doing this, a point C on the Riemannian manifold
M is projected to a Euclidean space via the logarithm map:

�log : M �→ TI , C → log(C). (10)

The image �log(M) is the tangent space TI of the manifold
M at the point of the identity matrix I , which is a vector space
spanned by d × d symmetric matrices. The LED metric thus
simply reduces to a Euclidean distance in R

d×d . By computing
the inner product in the Euclidean space TI , Wang et al. [2]
further derived a Riemannian kernel function on the
manifold M:

klog(Ci , C j ) = trace[log(Ci ) · log(C j )], (11)

where trace[·] denotes the matrix trace. Benefited from this
explicit kernel mapping, any learning method originally devel-
oped for vector spaces can be used, by taking either the Log-
mapped covariances as input to its linear formulation or the
derived kernel function as input to its kernel formulation.

IV. BINARY CODE LEANING

For each face track, we can obtain a complete SPC
representation as introduced in Section III, but meanwhile
such representation magnifies the feature dimension, which
certainly leads to higher space and time complexity, espe-
cially conflicting with the demand of retrieval task. More-
over, the current SPC representation does not incorporate
any supervision information, which will definitely favor the
retrieval accuracy. To address these problems, our strategy is to
discriminatively map the high-dimensional SPC representation
into a much lower-dimensional Hamming space to produce
a binary vector for each face track. Two advantages can be
induced by doing this, the concise space demand, and the
low time cost (only bit-wise XOR operation). Next we will
discuss how to efficiently learn binary codes from those
high-dimensional representations.
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A. Discriminability and Stability

First, the discriminability of binary codes in Hamming
space is expected most. To this end, we further decom-
pose the discriminability constraint into two components,
i.e., intra-class (within-class) compactness and inter-class
(between-class) separability. That is, instances from the same
class should have similar codes, and instances from different
classes should have better separability in the target Hamming
space. Formally, let B ∈ {−1, 1}K×M denotes the binary codes
of training instances, where K and M are the binary code
length and the total number of training instances, respectively.
bi ∈ {−1, 1}K×1 denotes the binary code of the i th training
instance. Then the distance measures of within-class SW and
between-class SB can be formulated as:

SW =
∑

c∈{1:R}

∑

yi ,y j=c

dis(bi , b j ), (12)

SB =
∑

c∈{1:R}
yi=c

∑

c′∈{1:R}
c �=c′,y j=c′

dis(bi , b j ), (13)

where R is the total number of classes, yi denotes the class
label of the i th training instance, dis(·) can be any available
distance measurement in Hamming space. Thus, to implement
a strong discrimination, we minimize the following energy
function Edisc as:

Edisc = SW − λSB . (14)

Second, stability (sometimes also called as generality,
learnability, or predictability) is another crucial constraint
in binary code learning. Intuitively, it is the concern about
similarity preserving, i.e., visually similar instances should
be mapped to similar binary codes within a short Hamming
distance. In some sense, the above discriminability constraint,
i.e., Edisc, only minimizes the empirical risk on the training
instances, and here we add the stability constraint to achieve
structural risk minimization. Fig. 5 illustrates the relationship
between discriminability and stability. Let’s imagine each bit
of binary code as a split (hyperplane) in the original feature
space that separates training instances into two half-spaces
that have binary code value −1 v.s. the ones that have value 1,
and we want the most stable splits. Specifically, a split is stable
when it has large margins from instances around it. Think
about such a disappointing situation where a split crosses
an area with dense instances, many actually neighboring
instances will be inevitably assigned different binary code
values.

Technically, we resort to the classical Support Vector
Machine (SVM) [50] with its inherent max-marginal property
to implement the binary code learning, i.e., hash functions
learning. In addition, to maximally exploit the complementar-
ity among the patch-level covariances in SPC, we dexterously
embed the combination coefficients learning into the stability
constraint. To that end, Multiple Kernel Learning (MKL) [51]
is utilized along with the sophisticated Riemannian kernel in
Eqn. (11). In particular, we build K splits (each corresponding
to one bit of the binary code) by training K kernel SVMs
individually. More concretely, we denote the kth split by

Fig. 5. Illustration of the two constraints when learning 1-bit binary code,
i.e., discriminability and stability, where the two gray splits only satisfy either
of the constraints, and the green split is the one we need.

ωk (k = 1, · · · , K ), and the energy function can be formulated
as follow.

Estab = 1

2

∑

k∈{1:K }

∥∥∥ωk
∥∥∥

2+ δ
∑

k∈{1:K }
i∈{1:M}

max(1−bk
i (ω

k T
ϕk(CSPC

i )), 0),

s.t . <ϕk(CSPC
i ), ϕk(CSPC

j )>=
∑

l∈{1:L}
βk

l klog(C l
i , C l

j ),

∀k ∈{1:K },∑

l∈{1:L}
βk

l = 1,∀k ∈{1:K },

βk = [βk
1 ,βk

2 , ...,βk
L ]T ≥ 0,∀k ∈{1:K }, (15)

where ϕk(·) denotes the kth mapping function to map CSPC
i to

a Reproducing Kernel Hilbert Space (RKHS) [52] (by means
of the kernel trick theory), bk

i ∈ {−1, 1} indicates in which
side of the kth split the i th instance lies, and βk is the com-
bination coefficient of the L kernel matrices (corresponding
to the L layers of patch-level covariance in SPC) for the
kth bit.

After the above analysis, we can reach the final objective
function by combining Eqn. (14) and Eqn. (15) to simultane-
ously consider the discriminability and stability of the target
binary code:

min
ω,β,B

Edisc + αEstab. (16)

B. Optimization Algorithm

Since the objective function in Eqn. (16) is non-convex,
it is infeasible to find a global analytical solution. In practice,
we utilize block coordinate descent method [53] to indepen-
dently optimize each individual item for iteratively updating
ω, β, and B. The pseudo-code of optimization can be found
in Algorithm 1. Next, we give a detailed discussion. Assume
that we have M training instances of R classes, and for each
instance we have the computed SPC representation CSPC

i with
its class label yi ∈ {1, 2, ..., R}.

Initialization: First, computing the L kernel matrices,
i.e., Kl ∈ R

M×M , l ∈ {1, 2, ..., L}, with the Riemannian



LI et al.: SPC-BASED CVC FOR ROBUST FACE RETRIEVAL IN TV-SERIES 5911

Algorithm 1 Optimization

kernel defined in Eqn. (11); second, for each bit, initial-
izing the combination coefficient of the L kernel matrices,
i.e., βk , as [ 1

L , 1
L , ..., 1

L ]T
; third, for each bit, computing

the corresponding integrated kernel matrix K k ∈ R
M×M

by K k = ∑L
l=1 βk

l Kl ; lastly, randomly initializing the binary
codes B.

Fix B to Optimize ω and β: for each bit, we use
bk ∈ {−1, 1}1×M as training label to train a kernel SVM
with K k as training data. Since we also need to learn
the kernel combination coefficient βk , an off-the-shelf MKL
method, i.e., SimpleMKL [51], is adopted to simultaneously
optimize ωk and βk for each bit. Moreover, as kernel trick
is applied to handle the non-linear mapping, in practice
each ωk is learned in an equivalent form of projection
Uk ∈ R

M×1 according to the Riesz representation theo-
rem [54], [55], which further forms the integrated projection
matrix U = [U1, U2, ..., U K ] ∈ R

M×K corresponding to ω.
Fix ω and β to Optimize B: having the learned ω

(i.e., U) and β, we then use them to predict B and fur-
ther optimize it. For each bit, we first compute K k =∑L

l=1 βk
l Kl , and then use the learned split ωk (i.e., Uk )

to predict bk by quantizing the kernel SVM’s outputs as
bk = sgn(Uk T

K k). After this, we feed the predicted B =
[b1, b2, ..., bK ]T

into a subgradient descend based binary code
optimization method proposed in [31] to update it. It is
during this step that the discriminability of binary codes
is guaranteed.

Convergence Criteria: the whole optimization is looped by
iteratively update ω, β, and B, and in practice we find that
usually two or three times iterations can make the objective
function converge. For better understanding, we design a
toy example to illustrate the optimization process of one bit
in Fig. 6.

V. EXPERIMENTS

In this section, we evaluate the proposed method in the face
video retrieval task on two TV-series video databases. Besides,
as a general video matching algorithm, we also evaluate the
proposed method in the traditional video face recognition task.

Fig. 6. Illustration of the iterative optimization process of a one-bit two-class
case. The square and triangular shapes represent two classes, and the blue and
red colors represent two code values (i.e., 1 and -1) respectively. The green
solid line indicates the learned split.

A. Databases Description and Settings

We construct two large scale video databases2 from two hit
American shows, i.e., the Big Bang Theory (BBT), and Prison
Break (PB). These two TV-series are quite different in their
filming styles: BBT is a sitcom about 20 minutes per episode
with a main cast of 5 characters and mostly takes place
indoors; on the other hand, PB has an average length of
about 42 minutes per episode, where many shots are set
outside, resulting in a large range of different illumination.
To extract face tracks, several techniques, e.g., shot boundary
detection, face detection, tracking, and facial landmark local-
ization are involved. To guarantee the purity of databases,
we also invite 5 fans of each TV-series to annotate every
extracted face track. Specifically, we deal with the whole
first season of both TV-series, i.e., 17 episodes for BBT,
and 22 episodes for PB, and finally we collect 4,667 and
9,435 face tracks from BBT and PB, respectively. Fig. 7 shows
some exemplar face tracks of the two constructed TV-series
video databases, and the face track distributions are listed
in Table I. Considering the space complexity of covariance
matrix, faces in both TV-series are cropped from the central
region of original square images (Fig. 7), and normalized to
20×16 gray images with left eye center located at (4, 8) and
right eye center located at (11, 8) respectively. For simplicity,
histogram equalization is the only pre-processing operation
employed to eliminate lighting effects.

For retrieval performance evaluation, we randomly parti-
tion each TV-series into three sets, i.e., training set, query
set, and database set. More specifically, for each TV-series,

2The databases and Matlab code can be downloaded at
http://vipl.ict.ac.cn/resources.
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Fig. 7. Some exemplar face tracks of the two constructed TV-series databases, i.e., (a) the Big Bang Theory, characters from top to bottom are Sheldon
Cooper, Howard Wolowitz, Penny, Leonard Hofstadter, and Raj Koothrappali, and (b) Prison Break, characters from top to bottom are Michael Scofield,
Lincoln Burrows, Paul Kellerman, Brad Bellick, and Theodore Bagwell.

TABLE I

DISTRIBUTIONS OF FACE TRACKS IN the Big Bang Theory (BBT)
AND Prison Break (PB). SPECIFICALLY, THERE ARE

4,667 FACE TRACKS OF 15 CHARACTERS AND

9,435 FACE TRACKS OF 20 CHARACTERS IN

BBT AND PB, RESPECTIVELY, WHERE
EXTRAS (USUALLY APPEAR IN THE

BACKGROUND) ARE LABELED

AS “Unknown”

we randomly select 10 face tracks per character as training
set (not including the Unknown ones, because it’s impossible
to label the extra identities), and leave the rest as test data.
Then we further select 10 face tracks per character randomly
from test data to form query set, the rest of test data is
regarded as database set (for the characters whose images less
than 20, e.g., Althea, Dmitri, Kurt, we will not choose images
from them to the query set). To sum up, three sets have no
overlap images, and training set is used for model training, and
query set acts as key words for retrieving from database set.
For quantitative evaluation, we use the standard mean Average
Precision (mAP) [56] and the precision recall curve [57] as
measurements.

Fig. 8. Comparison of two computation schemes of patch-level covariance
on (a) the Big Bang Theory and (b) Prison Break. Standard Version: first
computing the pixel-level covariance with the original-size face track, and
then sum-pooling it as proposed in Section III-B; Resized Version: directly
computing the pixel-level covariance on the resized face track.

B. Evaluation on Patch-Level Covariance

In this subsection, we evaluate different patch-level covari-
ances. As defined in Section III-B, a patch-level covariance
can be treated as a sum-pooling form (or down-sampling
form) of the fundamental pixel-level covariance, and this
raises a natural baseline comparison. Which of the following
two patch-level covariance computation schemes makes more
sense: (a) first computing the pixel-level covariance with
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Fig. 9. Comparison with state-of-the-art binary code learning methods in precision recall curve on the Big Bang Theory and Prison Break, where E.W. and
L.W. are the abbreviations of equal weight and learned weight respectively, and O. is the initial of overlap. (a) K=8, the Big Bang Theory. (b) K=8, Prison
Break. (c) K=16, the Big Bang Theory. (d) K=16, Prison Break. (e) K=32, the Big Bang Theory. (f) K=32, Prison Break. (g) K=64, the Big Bang Theory.
(h) K=64, Prison Break. (i) K=128, the Big Bang Theory. (j) K=128, Prison Break. (k) K=256, the Big Bang Theory. (k) K=256, the Big Bang Theory.

the original-size face track, and then down-sampling it as
the proposed method; (b) directly computing the pixel-level
covariance on the resized face track3 (e.g., computing the
patch-level covariance with 2×2 patch size, it seems, can be
implemented by computing the pixel-level covariance on the
resized face track which has 50% height and width of the orig-
inal size). Intuitively, the above two schemes seems equivalent
to each other.

For this and the following experiments, we fix the number
of patch types as 25, ranging from 1×1 (i.e., pixel-level
covariance), 1×2 to 5×5. Moveover, different-sized patch
results in different-sized covariance, e.g., 1×1 and 2×2 patch
sizes respectively lead to 320×320 and 80×80 patch-level
covariances with the provided face size (i.e., 20×16). Fig. 8
shows the comparison between the two schemes in mAP. It is
quite obviously to find that the proposed scheme (standard
version) performs better than the baseline scheme (resized
version) in most cases, especially in the ones with large patch
size, and that is mainly because the resizing of original face
track inevitably leads to information loss at the starting line,
thus can only providing a limited basis for the subsequent
covariance computation. In contrast, the proposed scheme
first computes an over-complete pixel-level covariance with
the original-size face track, and the sum-pooling operation
is placed in the second step, which is supposed to make
more sense. In addition, an interesting phenomenon is found
that for patches with small sizes, the comparison results are

3In this work, we used Matlab function imresize() for face track resizing.
Specifically, we have tried bilinear and bicubic interpolation strategies, and for
the current face size, i.e., 20×16, there was no obvious performance difference
between them (we adopted the bicubic strategy in this work). That is mainly
because of the relatively low resolution, and we do believe as the resolution
increases, the advantage of bicubic will become increasingly evident.

opposite on the two TV-series (i.e., for the Big Bang Theory,
resized version is better, and for Prison Break, standard version
wins). Such phenomenon is mainly caused by the different face
image conditions (resolutions) of the two TV-series. As two
TV-series with different filming style, the Big Bang Theory
has plenty of close-up shots which lead to relatively high face
resolution, while Prison Break consists of lots of night and
outdoors scenes which bring relatively bad face quality. Thus,
Prison Break suffers more than the Big Bang Theory about
information loss caused by image resizing. As a consequence,
the proposed method in general exhibits its competitiveness
on low quality faces.

C. Evaluation on Spatial Pyramid Covariance

In this subsection, we evaluate the effectiveness of SPC,
i.e., integrating the above 25 patch-level covariances. Table II
and Fig. 9 respectively exhibit this evaluation on two data-
bases in mAP and precision recall curve, where CVC [12]
denotes the implementation of single pixel-level covariance,
and SPC-CVC denotes the implementation of SPC (E.W.
and L.W. are the abbreviations of equal weight and learned
weight, respectively indicating two integrating strategies for
the 25 different parameterized patch-level covariances in SPC).
Please observe these results along with Fig. 8. Quite consistent
with our intuition, by fully exploring the inherent comple-
mentary among different patch-level covariances, SPC-CVC
(L.W.) is shown to be more competitive than any single
patch-level covariance, and straightforwardly treating different
patch-level covariance with equal concern as SPC-CVC (E.W.)
only results in limited performance (even lower than the
fundamental CVC). For better understanding, we also visualize
the combination coefficient of the 25 covariances in Fig. 10,
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TABLE II

COMPARISON WITH STATE-OF-THE-ART BINARY CODE LEARNING METHODS IN mAP ON the Big Bang Theory AND Prison Break, WHERE U.,
S.U., AND S. INDICATE UNSUPERVISED, SEMI-SUPERVISED, AND SUPERVISED METHOD RESPECTIVELY, E.W. AND L.W. ARE THE

ABBREVIATIONS OF EQUAL WEIGHT AND LEARNED WEIGHT RESPECTIVELY, AND O. IS THE INITIAL OF OVERLAP

Fig. 10. Visualization of the learned combination coefficients for the
25 patch-level covariances on the two databases, i.e., (a) the Big Bang Theory
and (b) Prison Break. In this visualization, larger weight is shown in warmer
color, and for space limitation only 64 bits are shown here.

and for space limitation only 64 bits are shown here. As men-
tioned in Section III-B, patch-level covariances can be treated
as derivatives of the ancestral pixel-level covariance, but with
more concise representation volume, more explicit semantic
interpretability, and more robust mis-alignment invariance.
When we attempt to combine pixel-level covariance and dif-
ferent patch-level covariances, the theory of natural selection
successfully selects representative patch-level covariances to
reconstruct and then substitute the over-complete pixel-level
covariance (almost zero weight).

D. Evaluation on Binary Code Learning

After the evaluation of front-end video modeling, in
this subsection, we mainly evaluate the binary code
learning part. To this end, we select several state-of-the-art

hashing methods as comparison, i.e., the unsupervised
Locality-Sensitive Hashing (LSH) [24], Random Rota-
tion (RR) [29], ITerative Quantization (ITQ) [29], Spectral
Hashing (SH) [28], Minimal Loss Hashing (MLH) [36],
the Semi-Supervised Hashing (SSH) [30], and the super-
vised Discriminative Binary Code (DBC) [31], Kernel-based
Supervised Hashing (KSH) [32], Supervised ITerative Quan-
tization (SITQ) [29], supervised Minimal Loss Hash-
ing (MLH) [36], and Hierarchical Hybrid Statistic based Video
Binary Code (HHSVBC) [38]. It’s important to note that MLH
is designed to be compatible with both unsupervised and
supervised training. Technically, training data for MLH are
organized in the form of pairs along with binary similarity
labels, i.e., 1 for similar pairs and 0 for dissimilar pairs,
and such design naturally enables the extensibility from unsu-
pervised to fully supervised learning. That is to say, if class
labels are not available for training, binary similarity labels
can be obtained by thresholding pairwise distances based on
some specific metric (e.g., Euclidean distance), while binary
similarity labels could be easily generated with given class
labels (i.e., 1 for pairs in which elements come from the same
class, and 0 for otherwise).

For fair comparison, we fix the front-end video model
as 320×320 pixel-level covariance. However, most of the
competitive methods are designed on Euclidean space and
do not have the kernel version. Hence, here we use the
Log-Euclidean Distance (LED) as [49] to map the Riemannian
covariance to Euclidean space, in which all the competitive
methods can handle. Table II and Fig. 9 respectively show
the comparison results on the two databases in mAP and
precision recall curve. It is obvious to find that supervised
methods generally achieve higher retrieval accuracy than those
unsupervised and semi-supervised methods, which mainly
attribute to the full use of supervised information. Besides,
among all the unsupervised hashing methods, MLH performs
best with its hinge-like loss function and the latent structural
SVM framework, and such characteristics indicate us that the
stability or generality (constrained by max-margin) is of great
importance for hash function learning. Please also note that,



LI et al.: SPC-BASED CVC FOR ROBUST FACE RETRIEVAL IN TV-SERIES 5915

for all the listed methods, we carefully tuned the parameters
through cross validation according to the suggestions of the
original literatures and released codes.

Compared with those state-of-the-art supervised hashing
methods, the proposed method achieves comparable or even
better performance. A possible interpretation is that the
proposed method also incorporates the stability while consider-
ing the discriminability, which makes the learned codes better
generality on unseen data. Again, MLH exhibits its effective-
ness among all the supervised hashing methods (i.e., DBC,
KSH, SITQ, MLH, CVC), especially with large code lengths
(128 and 256 bits). Compared with MLH (optimal parameters:
ρ is set to the value that guarantees at least 50% recall on
validation set, λ is set to 0.7, and 2,000 training pairs with
1,000 epochs are employed), CVC achieves better performance
with small code lengths (8, 16, 32 bits), yet loses with larger
code lengths. This phenomenon can be mainly explained by
the different binary codes initialization strategies of the two
methods, that is, MLH initializes binary codes with LSH which
makes each bit equal significance, while CVC utilizes signified
PCA projections for code initialization which endows each bit
different role at the starting line.

For further boosting the retrieval performance of CVC,
we could upgrade the current non-overlapped patch partition-
ing to overlapped version. Specifically, we straightforward set
the step size of patch sliding (horizontal/vertical) to half of the
patch size (width/height). It can be seen that the overlapping
strategy, i.e., SPC-CVC (L.W.)(O.), indeed make the perfor-
mance higher, even though accordingly increase the computa-
tional complexity. Apart from above, it’s not difficult to find
a huge performance difference between the two databases.
The reasons lie in: (a) different filming style, i.e., the Big Bang
Theory is an indoors sitcom with plenty of close-up shots,
whereas Prison Break is a crime theme show with lots of night
and outdoors scenes, which leads to distinct face qualities;
(b) different amount of extras, i.e., the Big Bang Theory as a
sitcom has limited number of extras (less than 20), whereas
Prison Break has much more (roughly more than 200). Among
all the comparative methods, HHSVBC is the most closest one
with the proposed method. It is designed by first utilizing dif-
ferent parameterized fisher vectors as frame representation that
can encode multi-granularity low-level variation information
within the frame, and then modeling the video by its frame
covariance matrix to capture high-level variation information
among video frames. Thus, it is supposed to be unfair to
compare HHSVBC (high-level fisher vector feature) with
the proposed method (raw-level intensity feature). However,
SPC-CVC still exhibits its competitiveness, especially under
the overlap patch setting. A reasonable interpretation is that
fisher vector requires relatively high-quality/resolution image
to capture image local details. In addition, we also exhibit two
real retrieval cases on the Big Bang Theory and Prison Break
in Fig. 13.

E. Evaluation on Method Generality

For better evaluating the generality of the proposed method,
in this subsection we conduct cross-training experiments on

TABLE III

EVALUATION ON METHOD GENERALITY WITH CROSS-TRAINING STRAT-
EGY IN mAP ON the Big Bang Theory AND Prison Break WITH FIXED

256 BITS, WHERE ‘SELF’ DENOTES TRAINING AND TESTING

ON THE SAME TV-SERIES, AND ‘CROSS’ REPRESENTS CROSS

TRAINING, e.g., THE SUB-COLUMN ‘CROSS’ UNDER
COLUMN ‘the Big Bang Theory’ MEANS TESTING

ON the Big Bang Theory WITH THE TRAINING

DATA FROM Prison Break

the two TV-series, i.e., testing on the Big Bang Theory with
Prison Break as training data, and vice versa. To be fair,
we only take supervised hashing methods as comparative
methods, including Discriminative Binary Code (DBC) [31],
Kernel-based Supervised Hashing (KSH) [32], Supervised
ITerative Quantization (SITQ) [29], supervised Minimal Loss
Hashing (MLH) [36], and Hierarchical Hybrid Statistic based
Video Binary Code (HHSVBC) [38]. Experimental results
can be found in Table III, where ‘Self’ denotes training
and testing on the same TV-series, and ‘Cross’ represents
cross-training, e.g., the sub-column ‘Cross’ under column
‘the Big Bang Theory’ means testing on the Big Bang Theory
with the training data from Prison Break. From the table,
we can notice that: (a) most of the list methods get worse
with the cross-training strategy, as it is obvious that open-set
compared with close-set makes the learning problem much
more challenging; (b) methods based on max-margin principle,
e.g., DBC, MLH, HHSVBC, perform much stable compared
with the others without max-margin idea, i.e., KSH and
SITQ; (c) the proposed method performs best, and even slight
improvement can be detected under the setting testing the
Big Bang Theory with Prison Break’s training data. Such
improvement is mainly caused by the increasement of training
subjects, i.e., the Big Bang Theory has only 14 characters for
training, while Prison Break has 19 characters.

F. Evaluation on Parameter Sensitivity

In this subsection, we focus on the parameter sensitivity.
Generally speaking, although several parameters appear in
Section IV, the proposed method is parameter insensitive.
Specifically, the objective function Eqn. (16) is just used as a
conceptual formulation to depict the proposed two constraints.
As it is infeasible to find a global analytical solution, we had
to optimize each component separately in an iterative manner
as in Algorithm 1. That is, the parameter α mainly plays
the role of balancing each component, and was simply set
to 1 indicating equal importance. Besides, another balance
parameter λ in Eqn. (14) is used to manage the trade-off
between SW and SB , and in practice we set it to the pre-
computed value according to training data to equally handle
each within-class and between-class pair. Besides, the only
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Fig. 11. Retrieval performance against training number per character on the
two databases, i.e., (a) the Big Bang Theory and (b) Prison Break. Without
loss of generality, we take all the possible code lengths into consideration.

substantial parameter is the soft margin parameter δ, which
was simply set to 1 as standard SVM.

Next, we analyse the impact of a practical parameter on
retrieval performance, i.e., the training number of each char-
acter. To this aim, we vary the instance number from 1 to 10
(we set the upper bound to 10, because some characters have
only dozen of instances), and a ten-folder cross validation is
adopted to make the curves more gentle. Fig. 11 shows the
retrieval performance against training number per character on
the two databases. It is quite clear that the proposed method
performs better with more training instances per character,
as rich data offers the possibility of fully exploration of code
discriminability. Besides, we can also notice that some of the
curves reveal their decreasing tendency with a large number
of training samples. The only reason for this is over fitting
on the training data. Therefore, the optimal parameter should
perfectly balance the method discriminability and generality.

G. Evaluation on Computational Complexity

Since the proposed method can be decomposed into two
parts, i.e., the front-end video modeling and the back-end
binary code learning, here we list the computational complex-
ity separately for each part. The time-consuming is measured
in seconds on a PC with Intel Core i7 processor of 3.40GHz.

Generally speaking, the proposed method is computationally
efficient. More specifically, the computation of front-end video
modeling takes 0.56s in average for each face track (roughly
50 frames), including 0.20s for the fundamental pixel-level

Fig. 12. Some exemplar video frames of the YouTube Celebrities database,
and celebrities from top to bottom are Adam Sandler, Bruce Willis, Al Pacino,
Bill Clinton, and Angelina Jolie.

TABLE IV

COMPARISON WITH PREVALENT IMAGE SET CLASSIFICATION

METHODS ON YouTube Celebrities

covariance and 0.36s for the patch-level covariances (which
can be efficiently derived from the just computed pixel-level
covariance). With the pre-computed kernel matrices, the back-
end binary code learning takes 0.35s in average of each bit
with standard LIBSVM [58].

H. Evaluation on Traditional Video Face Identification

Although the proposed method is designed for face video
retrieval, it is also a general video matching algorithm, but with
more concise features. In this part, we carry out an additional
evaluation on traditional video face recognition task, i.e., video
face identification, on YouTube Celebrities.

YouTube Celebrities (YTC) is a widely studied and chal-
lenging benchmark [5] and contains of 1,910 face tracks
involving 47 celebrities collected from YouTube. Each face
track contains hundreds of frames, which are mostly highly
compressed, with low resolution and covering large intra-class
variations. Fig. 12 shows some exemplar video frames of
the YouTube Celebrities database. We use the data features
and 10-fold cross validation splits exactly the same as [2].
Specifically, each face is resized into 20×20 and only his-
togram equalization is used for pre-processing. In each folder,
one subject has 3 randomly chosen face tracks for the gallery
and 6 for the probe.

In this task, we mainly compare the proposed method
with the prevalent image set classification methods, includ-
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Fig. 13. Two real retrieval cases on the Big Bang Theory (upper) and Prison Break (lower). For space limitation, only top ten retrieved videos are shown
here, and green (red) box indicates relevant (non-relevant) face track.

ing linear subspace based methods, Mutual Subspace
Method (MSM) [16], Discriminative Canonical Correla-
tions (DCC) [17]; nonlinear manifold based methods,
Manifold-Manifold Distance (MMD) [18], Manifold Discrim-
inant Analysis (MDA) [19]; affine subspace based methods,
Affine Hull based Image Set Distance (AHISD) [20], Convex
Hull based Image Set Distance (CHISD) [20], Sparse Approx-
imated Nearest Points (SANP) [21] and a covariance-based
method Covariance Discriminative Learning (CDL) [2].

For fair comparison, important parameters of each method
are empirically tuned according to the recommendations in
the original literatures as well as the source codes provided
by the authors. Finally, we set the parameters as follows.
In DCC, the eigen subspace dimension of each vector set is set
to 10. In MDA, the number of between-class NN local models
and the subspace dimension are specified as [19]. For both
AHISD and CHISD, we use their linear version. The error
penalty in CHISD is set to C = 100 as [20]. For SANP,
we adopt the same weight parameters as [21] for the convex
optimization. For CDL, we use Partial Least Squares (PLS)
as the back-end classifier. For the proposed method, we sim-
ply keep all the parameters consistent with the previous
experiments.

Table IV shows the comparison with the above preva-
lent image set classification methods on YouTube Celebrities.
From this table, we are a little surprised that the proposed
CVC with extremely compact 128 bits achieves a comparable
or even superior performance compared with these state-of-
the-art real-valued image set classification methods, which
are elaborately designed for video face recognition. The rea-
son behind such superiority lies in twofold: (a) covariance,
as a natural statistical model, faithfully captures the orig-
inal video information, containing appearance textures and
dynamic actions; (b) the proposed binary code learning frame-
work dexterously incorporates the stability constraint while

considering discriminability, which makes the learned binary
codes better generality on the unseen test data. Similarly,
we further upgrade the non-overlapped SPC-CVC (L.W.) to
overlapped version SPC-CVC (L.W.)(O.), with setting the
step size of patch sliding (horizontal/vertical) to half of the
patch size (width/height). Unsurprisingly, higher performance
is achieved.

VI. CONCLUSION AND DISCUSSIONS

In this paper, we address the problem of face video retrieval
in TV-series. To solve this problem, we propose a Compact
Video Code (CVC) which at first models the face track
by its sample covariance, then forms the compact binary
representation by jointly optimizing for discriminability and
stability which are particularly crucial for retrieval. Based
on such framework, we extend the original covariance from
pixel-level to patch-level, and further devise a novel video rep-
resentation, named Spatial Pyramid Covariance (SPC), which
is a composite of different parameterized patch-level covari-
ances in a coarse-to-fine hierarchical structure. Accordingly,
the optimizing of SPC configuration parameter is embed-
ded into the discriminative binary code learning by means
of multiple kernel learning technique. The learned CVC is
computationally efficient and has been successfully applied to
different classification tasks, including face video retrieval and
identification with rather compact code.

As CVC is a binary representation, from another perspec-
tive, each bit of CVC can be regarded as an attribute classifier
which shows the presence or absence of specific attribute
of face tracks. Although these attributes have been proven
discriminative but they cannot be described by human beings,
that is to say, there is nothing of explicit semantic information.
In the future, we intend to explore the connection between
CVC and semantic attributes for more convenient and practical
retrieval applications, not limited to faces, but extend to more
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general objects, such as human behavior retrieval from massive
surveillance data.
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