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a b s t r a c t

A novel Sparsely Encoded Local Descriptor (SELD) is proposed for face verification. Different from
traditional hard or soft quantization methods, we exploit linear regression (LR) model with sparsity and
non-negativity constraints to extract more discriminative features (i.e. sparse codes) from local image
patches sampled pixel-wisely. Sum-pooling is then imposed to integrate all the sparse codes within each
block partitioned from the whole face image. Whitened Principal Component Analysis (WPCA) is finally
used to suppress noises and reduce the dimensionality of the pooled features, which thus results in the
so-called SELD. To validate the proposed method, comprehensive experiments are conducted on face
verification task to compare SELD with the existing related methods in terms of three variable
component modules: K-means or K-SVD for dictionary learning, hard/soft assignment or regression
model for encoding, as well as sum-pooling or max-pooling for pooling. Experimental results show that
our method achieves a competitive accuracy compared with the state-of-the-art methods on the
challenging Labeled Faces in the Wild (LFW) database.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Face recognition has attracted significant attention due to its
wide potential applications in public security, law enforcement,
etc. Numerous methods or techniques have been developed as
surveyed in [1], and considerable progresses have been achieved
in the past decades. Currently, state-of-the-art face recognition
systems have been able to work well under well-controlled
conditions with cooperative users. However, as discovered by
LFW evaluation [2], face recognition under uncontrolled environ-
ment still remains a great challenge due to complex variations in
pose, illumination, expression, aging, etc. To well address this
problem, how to discriminatively represent face images plays a
key role in the task of unconstrained face recognition.

In the past decade, local descriptors, modeling micro-patterns
in images, have formed a blowout in face recognition area [3–9],
due to their robustness to identity-irrelevant extrinsic variations.
These methods usually fall into two categories: hand-crafted and
auto-learned descriptors, which are briefly introduced in what
follows.

Many manually designed local patterns have been developed
for face recognition. For example, by combining the signs of the

differences of central pixel intensity from those of its neighboring
pixels, Local Binary Patterns (LBP) [6] implicitly encodes the micro-
patterns of the input image such as flat areas, spots, edges, and
corners. Because of its invariance to monotonic photometric
changes, LBP is robust to lighting variation to some extent. After
that, many variants of LBP were proposed. For instance, Zhao and
Pietikainen extended LBP to the spatial-temporal domain [10]. In
order to make LBP more robust to random and quantization noise
in near-uniform face regions, Local Ternary Patterns (LTP) [11]
were proposed. By combining Gabor filtering [12] with LBP, Local
Gabor Binary Pattern (LGBP) [8] was proposed to endow LBP with
capacity of encoding micro-patterns of multi-scale and multi-
orientation. Later on, histogram of Gabor phase patterns [7] was
further proposed to exploit the Gabor phase information. In
addition, some local descriptors widely used in general object
classification, such as Histogram of Oriented Gradients (HOG) [13]
or Scale Invariant Feature Transform (SIFT) [9], were introduced
into face recognition. In spite of its popularity, manually designing
local patterns are non-trivial because it has to balance skillfully
discriminative power and robustness against data variance.

In contrast to the above hand-crafted approaches, auto-
learning based methods typically pursue some codewords (repre-
sentative local visual primitives) from a large amount of low-level
features (e.g. SIFT). Then, given an input image, its low-level
features are encoded with these codewords by utilizing hard/soft
quantization, followed by pooling operation to form mid-level
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features. By learning the codewords directly on image patches
with K-means clustering algorithm, Meng et al. [14] proposed
Local Visual Primitives (LVP), which finally represented one face
image by concatenating block-based histograms of the learned
patterns for face recognition. Ahonen and Pietikainen [15] also
tried K-means clustering to build local filter response codebook.
Cao et al. [5] argued that quantized codes with K-means usually
had uneven distribution and the encoded histogram would be less
informative and less compact. To address the problem, they
substituted random-projection tree for K-means clustering. In
addition, hard quantization may lead to losing a lot of useful
information especially subtle textural features in face images,
since only one nearest atom is chosen as the agent for one input
raw feature. In contrast, soft quantization based methods [16,17]
encode the input features with multiple codewords so as to make
the representation more accurate. For instance, van Gemert et al.
[17] proposed to use Gaussian kernel to deal with visual word
ambiguity for object classification.

Another recent progress in face recognition is sparse represen-
tation based methods [18–25]. In [18], Wright et al. sparsely
encoded one face image by using the training set as the codebook
and then sought for the subject whose samples result in the
smallest reconstruction error by using their corresponding sparse
coefficients. In the case of multiple well-aligned samples per
person, they reported impressive results, especially for partially
occluded faces. Further, some researchers tried to learn a robust
codebook, such as the discriminative codebook [19] and the
compact Gabor codebook [20]. Besides, Cui et al [25] apply sparse
representation into video-based face recognition. However, these
methods mostly focus on holistic representation, and thus are
fragile to local appearance variations. Another limitation of these
methods is that they only work for the scenario where each
subject has multiple enrolled face images, i.e., they cannot be
applied to face verification and face identification with single
sample per person. To address these problems, more recently, face
region descriptor (FRD) [4] is proposed to address still and video
images with a similar framework.

Inspired by the above works, in this paper we propose a local
descriptor via texton-learning with sparsity constraints. Specifi-
cally, our method first learns visual codewords locally on image
patches with sparsity constraints. Then, non-negative sparse
regression against the visual codewords is exploited to project
each pixel-wise raw image patches into more discriminative
sparse codes, which is quite different from the existing hard
assignment methods [5,14,26] and soft assignment methods
[16,17]. In the next step, sum-pooling is exploited to integrate
the sparse codes within each image block, and at the same time
endow the generated mid-level features more robustness to
misalignment. Finally, Whitened Principal Component Analysis
(WPCA) [27] is used to further reduce the dimensionality and
suppress the noise of the pooled features, eventually resulting in
our Sparsely Encoded Local Descriptor (SELD).

As an extension of our previous work [3], we further improve
the conference work mainly on three aspects: (1) multiple block-
partitioning modes on face images are used to retain more facial
configuration information; (2) Distance Metric Learning (DML) is
combined with SELD to utilize supervised information; and
(3) extensive cross-validation experiments on the three compo-
nent modules: dictionary learning, encoding and spatial pooling.
As a whole, our contributions mainly lie in three folds: (1) propose
an auto-learning face descriptor for face verification; (2) conduct
extensive cross-validation experiments to validate the role of each
module; and (3) achieve a competitive performance on the LFW
dataset under its restrict protocol.

As our experiments are mainly conducted on the LFW dataset,
here we briefly review the related state-of-the-art methods on

it.1 To achieve competitive, latest methods usually fuse multiple
hand-crafted features, such as Gabor, LBP, TPLBP as in [28,29], or
learn more efficient features by using Bag-of-Word (BoW) frame-
work [5,4], or turn to deep learning [30]. To measure the similarity
of features, distance metric learning methods are popular to
enhance discriminability, as in [28,29,31]. Please note that, this
paper only focuses on the restrict protocol of LFW, so we do not
introduce methods depending on additional external dataset.

The remaining part of this paper is organized as follows.
Section 2 presents the details of the proposed SELD, including
the detailed description on the whole pipeline and three compo-
nent modules. Section 3 discusses the fusion of multiple different
partition modes, and the combination of Distance Metric Learning
and SELD. Results and analysis of comprehensive experiments on
LFW are presented in Section 4, followed by discussion and
conclusion in the last section.

2. Sparsely encoded local descriptor

In this section, we first give an overview of the proposed SELD.
Then we describe its three key components in detail: learning
dictionary, encoding image patches and pooling codes. Finally, a
discussion of WPCA is given.

2.1. Overview

SELD is essentially an enhanced texton-based method. It aims
to learn robust local descriptors from face images. The overall
schema of the proposed method is illustrated in Fig. 1. As shown in
the figure, before extracting the SELD features, we first roughly
align face images by fixing the eyes at the same position for all the
face images, and then filter them with a Difference of Gaussian
(DoG) so as to remove both high-frequency noises and low-
frequency illumination variations. To preserve more texton infor-
mation, we pixel-wisely sample raw image patches from the
images by a pre-defined template. Each raw patch is vectorized
into an intensity vector to form the original feature, which is then
sparsely encoded into a higher level feature vector using an
offline-learned over-complete dictionary (detailed in Section 2.2).

With the above sparse codes computed, the face image is
spatially partitioned into a number of cells (or blocks), and the
code vectors of all pixels within each cell are sum-pooled together
to form a single descriptor for this cell. Finally, in order to suppress
the noises of the pooled descriptors, we exploit whitened PCA to
project them into a low-dimensional space, which finally results in
our SELD.

In the above schema, if different cell-partitioning manners are
applied, multiple SELDs can be generated for each face image.
Given two face images, we may compute the similarity of their
corresponding SELDs in the same cell-partition. The similarity
scores from multiple partitioning manners can be either accumu-
lated together followed by the simple Nearest Neighbor (NN)
classifier for face identification, or fed into an SVM classifier for
face verification.

2.2. Dictionary learning with K-SVD

In theory, sparse representation assumes a signal can be
recovered from a very limited number of atoms contained in an
over-complete dictionary. Thus, how to construct a good diction-
ary that can well support the sparse recovery is very crucial for
subsequent representation and classification. To produce the

1 http://vis-www.cs.umass.edu/lfw/results.html.

Z. Cui et al. / Neurocomputing 147 (2015) 403–411404

http://vis-www.cs.umass.edu/lfw/results.html


dictionary, there are two types of methods [32]: mathematical
model based methods (e.g. Curvelets, Contourlets, Bandelets, and
complex wavelet transforms) and machine learning based meth-
ods (e.g. K-means clustering and K-SVD). Recent studies [33] have
indicated that the learned dictionary is generally more effective
than the manually designed dictionary (e.g. mathematical models)
for maintaining sparsity. Therefore, this work only considers
machine learning based methods for training dictionary. Among
them, one classic method is K-means clustering, which divides all
samples into K clusters and assigns each sample to its nearest
cluster.

However, K-means clustering assign each sample into only one
cluster, which does not match our subsequent Soft Quantization (SQ)
or regression based encoding methods. To tackle this problem, we
instead use the K-SVD [33] algorithm to learn the dictionary, which
naturally represents a sample by several atoms rather than only one,
and thus can reduce the representation uncertainty. Below we
introduce the K-SVD algorithm.

K-SVD is an iterative method that alternates between sparsely
encoding the training samples based on the current dictionary and
updating the atoms of the dictionary for better fitting the training
data. Formally, given a training set (e.g., sampled patches from training
face images) with N samples, Y ¼ ðy1; y2;…;yNÞ; yiARn to learn an
over-complete dictionary matrix D¼ ðd1;d2;…;dK Þ; ARn�K ðK≫nÞ
contains K prototype signal-atoms. K-SVD's objective function is

min
D;X

‖Y�DX‖2F ; s:t: 8 i; ‖xi‖0rT0; ð1Þ

where X¼ ðx1; x2;…; xNÞ, xiARK is the sparse coefficient vector for
the training sample yi, and ‖�‖0 is the l0 norm.

As mentioned above, the K-SVD optimization is solved by an
alternation algorithm, including two stages: in the first stage, D is
fixed, and then the above optimization problem can be solved by
some pursuit algorithms. The second stage aims to update the
dictionary together with the non-zero coefficients. In this stage,
the algorithm updates each column of the dictionary one by one,
dk, and the corresponding coefficients, xi

R, i.e., the i-th row of X.
The objective function (1) can be rewritten as

‖Y�DX‖2F ¼ ‖ Y� ∑
iak

dixi
R

 !
�dkxk

R‖
2
F ¼ JEk�dkxk

R J : ð2Þ

We enforce SVD on Ek, i.e. Ek ¼UT▵V, and then choose the first
column of U and the first column of V multiplied by ▵11 as the
updated dk, xk

R respectively.
In the dictionary learning, an important problem is how many

patches should be sampled for training. At first thought, it seems
that we should collect as many patches as possible by densely
sampling from a large-scale database. In practice, since similar
image patches often recur many times inside an image or even
across different images, thousands of patches, sparsely sampled

from hundreds of training images, are sufficient to learn a robust
dictionary, which is validated in our experiments.

2.3. Encoding via non-negative Sparse Coding (nnSC)

After the dictionary is learned by the above K-SVD method,
given any input face image, we need to encode its all local patches
sampled densely (e.g., pixel by pixel). In previous literature, there
are two encoding methods: hard quantization (HQ) and soft
quantization (SQ). The former usually chooses one atom as the
agent for each input sample (an image patch in our case), which
can be formulated as follows:

xAf0;1gK ; xj ¼ 1 if j¼ arg min
1rkrK

‖y�dk‖2: ð3Þ

Obviously, HQ might lead to visual word ambiguity because two
samples with large difference might be assigned to the same atom,
which leads to information loss. To tackle the problem, SQ [17,34]
seems to be a better choice by assigning a patch fuzzily to several
atoms. For this purpose, Gaussian kernel is often used to produce
the soft codes. Formally, given an input sample y, its soft codes are
computed by

xj ¼
expð�σ‖y�dj‖2Þ

∑
K

k ¼ 1
expð�σ‖y�dk‖2Þ

; j¼ 1;…;K ; ð4Þ

where the parameter σ controls the softness. When σ-1, the
above representation is equivalent to HQ.

Unlike both HQ and SQ, we exploit linear regression to encode
the raw patches, which computes the weight coefficients of atoms
by using reconstruction. In view of the intrinsic sparse coding
mechanism in human visual system [35], we further add sparsity
constraints into the regression-based encoding process. In addi-
tion, in order to search the atoms with positive correlations rather
than negative correlations, non-negativity constraints are imposed
on the regression coefficients, which also guarantees pure accu-
mulation without subtraction in the sequent sum-pooling step.
Therefore, we finally formulate our encoding method as the
following sparse regression model:

min
x

‖y�Dx‖2þλ‖x‖1 ð5Þ

s:t:xZ0 ð6Þ
The l1 norm enforces the reconstruction coefficient x more sparse
with the increment of λ. Many optimization algorithms can solve
the above model. In this paper, we choose the least angle
regression (LAR) [36] for its high efficiency. LAR can be viewed
as a kind of democratic version of forward step-wise regression.
We name this encoding method as Non-Negative Sparse Coding
(nnSC).

Fig. 1. The proposed framework of sparsely encoded local descriptor.
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Although the above regression procedure is very efficient, it can
be still time-consuming when encoding an input image, because
we need to solve above regression for a great number of patches
(sampled at each pixel). To further accelerate the encoding, an
alternative is locality-constrained linear regression, inspired by the
locality-constrains linear coding [37]. Specifically, given an image
patch, we first find its m nearest neighbors among all the atoms in
the dictionary, which are then used for the regression. Formally,
the non-zero terms of the code are obtained by solving the
following optimization:

min
~x

‖y�Dy ~x‖2; ð7Þ

where the subdictionary Dy only consists of the first m nearest
neighbors of y. Dy is usually full column rank due to m≪n, so the
solution of (8) can be computed analytically

~x ¼ ðDT
yDyÞ�1DT

yy: ð8Þ

We call this encoding method as Local Least Squares (LLS).
Additionally, by adding non-negative constraints to LLS, we can
further reach non-negative Local Least Squares (nnLLS), which can
be solved by gradient descent algorithms. As has been proved [38],
locality naturally leads to sparsity but not necessarily vice versa.

2.4. Sparse codes accumulation via sum-pooling

After the above encoding, each pixel within the input image is
associated with a sparse code of K-dimension non-negative vector.
However, these codes are position-sensitive, thus not robust to
misalignment. To mitigate misalignment and extract more com-
pact features, we partition each face image into several blocks and
then integrate the codes within each block to obtain some more
robust features. Formally, we sum all the codes within each block
X ¼ fx1; x2;…; xpg to reach a more compact representation of the
block, i.e., z¼ x1þx2þ⋯þxp.

2.5. Dimension reduction via whitened PCA

Even after sum-pooling, the feature is still of high dimension-
ality due to the use of an over-complete dictionary. To further
reduce feature redundancy and find most intrinsic features, we
aim at seeking for a compacter representation. A popular method
is to use Principle Component Analysis (PCA). However, when a
few high-frequent visual words with less discriminability overly
dominate the variance, dimension reduction by using PCA might
wrongly emphasize those indiscriminating dimensions. For exam-
ple, smooth facial areas (e.g. the forehead and the cheek) usually
contain the same visual words with less discriminability, which
however account for too much energy and thus result in features
of weak discriminability. To avoid this problem, we resort to WPCA
instead. By whitening the variance (via dividing the eignenvalues),
WPCA can better suppress the influence of highly frequent but
less-discriminant codewords, and thus can extract features of
more discriminability.

3. Application to face verification

As a generic descriptor, the above SELD may be used in
different tasks. In the case of face verification, as shown in Fig. 2,
we may further improve it from two folds: one is to utilize
supervised information to SELD, and the other is to adopt multiple
block-partitioning modes to generate multiple SELDs. In the
following sections, we will introduce them in detail.

3.1. Combination with distance metric learning

For face verification task, the goal is to validate whether a pair
of face images is from the same subject or not. To utilize the label
information, we learn a Mahalanobis distance on SELDs. Formally,
given a set of n points fx1;…; xng, we seek a positive definite
matrix A which parameterizes the Mahalanobis distance as fol-
lows:

disAðxi; xjÞ ¼ ðxi�xjÞTAðxi�xjÞ ð9Þ
Generally, the degree of freedom of A is very high when xi is of
high dimensionality. Moreover, in some cases, only a small number
of samples might be available to train the model, e.g. in the LFW
evaluation protocol. Obviously, with the small sample size and
high model complexity, over-fitting often occurs in many algo-
rithms. One solution is to reduce model complexity by incorporat-
ing some prior information. Thus we use Information-Theoretic
Metric Learning (ITML) [39], which converts the problem of
distance metric learning to learn an entropic objective with
constraints on the Mahalanobis matrix. The objective function is

min
A

KLðpðx;A0ÞJpðx;AÞÞ ð10Þ

s:t: disAðxi�xjÞru; ði; jÞAS; ð11Þ

disAðxi�xjÞZ l; ði; jÞAD; ð12Þ
where pðx;AÞ ¼ 1=δ expð�1

2 disAðx;μÞÞ, δ is a normalizing constant,
μ is the mean, KL is the K–L divergence. The set S includes the
same-person pairs, D consists of the different-person pairs. u and l
are the upper and lower bound respectively, A0 is an initial matrix,
e.g. the identity matrix.

3.2. Combination of multiple block-partitioning SELDs

The face region and component technique [5] have demon-
strated promising performance for face verification due to their
preservation of spatial layout and robustness to local variations.
However, one partitioning mode might segment a whole compo-
nent into several parts. For instance, the nose component may be
divided into two blocks when the 1� 2 (horizontal� vertical)
partition is imposed on a face image, but the 1� 3 partition may
crop the nose into the second block. To handle this problem and
make full use of the structural information of different face
regions, we simply utilize multiple different partitioning modes
for each face image. Therefore, after spatial pooling on different
partitioning blocks, we can always collect multiple SELDs although
they might come from different partitioning modes. In addition,

Fig. 2. Illustration of the combination of multiple block-partitioning SELDs
with DML.
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face images of different scales usually contain different texton
information, so a multi-scale face model may be further used to
capture more identity information.

4. Experiments

In this section, we conduct extensive experiments on the LFW
dataset. First, we introduce the LFW dataset and the experimental
settings. Next, we cross-validate SELD on three modules respec-
tively: dictionary learning, encoding and pooling. Finally, the
effectiveness of combination of multiple block-partitioning SELDs
with DML is evaluated.

4.1. Database and experimental settings

LFW [2] database is designed for unconstrained face verifica-
tion with face images containing complex variations in pose, age,
expression, race, illumination, etc. Under the restricted mode, the
whole standard testing set consists of ten subsets and each subset
contains 300 same-person pairs and 300 different-person pairs.
The performance of an algorithm is measured by a 10-fold cross
validation procedure. The ROC curve or average recognition rate
serves as the evaluation criterion. The original size of each image
in LFW is 250� 250 pixels. In our experiment, all face images are
resized to 112� 60 pixels after simply cutting out the center from
the roughly aligned images provided by Wolf et al. [40]. In all
experiments, the parameters of the DoG filter are set to σ1 ¼ 0 and
σ2 ¼ 2, where σ1 ¼ 0 means no filtering. The size of the sampling
template is set to 9� 9. The sampling step is set to 1, i.e. pixel-
wise sampling. The default dictionary size is set to 256. The whole
face image is partitioned into 8� 4 blocks/cells as the default
setting, about 13� 13 pixels per block. The WPCA preserves the
first 20% dimensions.

4.2. Comparisons on three main modules

As described in Section 2, SELD contains three main modules:
dictionary learning, encoding and pooling. To evaluate the pro-
posed SELD, below we will discuss the three modules alternately,
and try to find the optimal combination strategy by comparing
other classic methods.

4.2.1. Comparisons of different dictionary learning methods
We first compare two classic dictionary learning methods,

K-means clustering and K-SVD, under different encoding schemes,
as shown in Fig. 3(a). Theoretically, K-means clustering minimizes

the within-class scatter matrix or maximizes the between-class
scatter matrix. Therefore, when the data is a normal distributed
and well separated, the centers of clusters can describe the
representatives well. K-SVD directly formulates sparse constrains
to its object function, and thus can match the sparse coding
method well. From Fig. 3(a), we can observe that K-SVD is more
matched to nnSC while the K-means algorithm is more adaptive to
HQ and SQ. However, the performances of K-SVD and K-means
seem comparable under the same encoding strategy, which might
be attribute to their nearly representation ability on dictionary
learning.

Second, we also attempt to train a dictionary by using FERET
database [41] and then apply this dictionary to LFW. The compar-
ison results (in Fig. 3(b)) indicate that the performance is almost
independent of the choice of training set because a large amount
of repetitive image patches often occur in different face databases.

4.2.2. Comparisons of varying encoding methods
Firstly, we compare nnSC with the previous hard quantization

and soft quantization methods under the dictionary learning with
K-SVD. By varying the dictionary size, the mean accuracies of the
three methods are reported in Fig. 4, where the block-wise cosine
scores are accumulated into the final similarity (Fig. 4(a)) or
directly fed into the SVM classifier to predict the similarity
(Fig. 4(b)). As in the two figures, we can find that the sparse
coding based method outperforms the traditional soft quantiza-
tion method, which is superior over the hard quantization method
due to the uncertainty for the latter. Meanwhile, we can find that
the accuracies are further promoted with the increase of diction-
ary size, which may be attributed to the stronger representation
ability of the larger size dictionary.

Secondly, since nnSC belongs to a linear regression model, we
may substitute nnSC for other reconstruction methods in SELD,
such as least squares (LS) and sparse coding (SC) without non-
negative constraints. The comparison results are reported in Fig. 5
(a). Note that, the direct sum-pooling on the codes generated from
LS and SC largely degrades the performance in our experiments
due to the trade-off between negative and positive codes, thus we
use absolute codes in pooling for LS and SC. Besides, as a substitute
of nnSC, nnLLS can not only achieve a comparable performance,
but also have a faster encoding procedure.

4.2.3. Comparisons of different pooling methods
In SELD, we employ sum-pooling on the codes to extract more

abstract features. Except sum-pooling, another classic pooling
method is max-pooling, which is often used to integrate sparsely
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Fig. 3. Performance comparison of dictionary learning methods. (a) Comparisons on two typical dictionary learning methods: K-means clustering and K-SVD, with different
encoding schemes. (b) Comparisons of different dictionaries trained on different datasets by K-SVD.
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sampled codes in object classification [34,37]. To compare the two
pooling methods, we conduct six comparison experiments, as
shown in Fig. 6. We can find that sum pooling works better than
max-pooling for face images in the SELD framework. To illustrate
the reason, below we give a theoretical analysis following the
recent work [42].

Given two classes C1 and C2, we can model the distribution of
image patches as conditional distributions pðf mjC1Þ and pðf mjC2Þ,
and pðf sjC1Þ and pðf sjC2Þ, where fm and fs are patch features
respectively from two pooling methods: max-pooling and sum-
pooling. Generally, better separability can be achieved by either
making the centers of two class conditional distributions far away
or reducing their variances.

For sum-pooling (or average pooling) over a block area (n
locations), i.i.d. Bernoulli variables with the mean value α, the sum
follows a binomial distribution Bðn;αÞ. So the expectation is μs ¼ α
and the variance is σ2

s ¼ αð1�αÞ=n. Thus, when the number n of
pooled codes becomes larger, sum-pooling is more robust to class
separability because the variance decreases with the increase of n.

For max-pooling, however, the variance increases when the
number of pooled codes increases. In max-pooling, the expectation
is μm ¼ 1�ð1�αÞn and the variance is σ2

m ¼ ð1�ð1�αÞnÞð1�αÞn. So
the mean increases monotonically from 0 to 1 with the increase of n.
For better separability between two classes, it should uniformize the
codes, which contradicts with sparse codes. Moreover, the variance
first increases and then decreases with the maximum 0.5 at
log ð2Þ=jlog ð1�αÞj. Consequently, in the case of face image, max-
pooling is not as efficient as sum-pooling due to densely sampling
codes (i.e. a larger n).

4.3. Combining multiple SELDs with distance metric learning

As described in Sections 3.1 and 3.2, we can apply SELD for face
verification by utilizing label information and multiple block-
partitioning modes. Below we first conduct the experiment of
SELD combined with DML, then try to fuse multiple SELDs from
different block-partitioning modes, and finally give a competing
performance on LFW dataset.

As a descriptor, SELDs can be concatenated with those machining
learning methods to further promote the performance by using
supervised information. In the case of face verification, we employed
the DML method [39] as introduced in Section 3.1. For DML, A0 is
initiated to be the identity matrix, which corresponds to Euclidean
distance. After sorting the similarities on the training set with
ascending trend, the values at 10%, 90% are assigned to u and l
respectively. The results are reported in Fig. 5(b) with five different
block partitioning modes: 4�4, 6�6, 6�3, 8�4, 8�8. From the
figure, we can find DML gets a promotion of more than one percent.

In addition, to make full use of spatial structures, we may fuse
the similarities under different block-partitioning modes across
different scales. As reported in Fig. 7(a), we crop face images into
two scales, 110�60 and 75�40 pixels, and then partition each
face image into five modes: 4�4, 6�6, 6�3, 8�4, 8�8. The
fusion (by the SVM classification) can greatly improve the perfor-
mance, about 4 percent at false positive rate 0.1.

Finally, we provide the comparisons with the state-of-the-art
methods on LFW database in Table 1. It can be seen that our
method is comparable with the current best methods. How-
ever, the most state-of-the-art methods combined multiple local

128 256 512 1024
80

81

82

83

84

85

86

the number of code−words

m
ea

n 
ac

cu
ra

cy

ksvd−HQ
ksvd−SQ
ksvd−nnSC

128 256 512 1024
80

81

82

83

84

85

86

the number of code−words

m
ea

n 
ac

cu
ra

cy

ksvd−HQ
ksvd−SQ
ksvd−nnSC

Fig. 4. Performance comparisons of HQ, SQ and nnSC. (a) The accumulation of block-wise cosine scores is used for the distance between two face images. (b)The block-wise
cosine scores between two images are fed into the SVM classifier.
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features, e.g. “CSMLþSVM” [28] employed three types of features:
intensity, LBP and Gabor, and used DML with the cosine distance.
In addition, it is worth pointing out that we do not compare with

Associate-Predict [43] and Tom-vs-pet [44] which use an external
data set and thus do not follow the standard protocol.

5. Discussion and conclusion

As shown in the above experiments, the proposed SELD is
impressively better than the similar methods based on hard or soft
quantization. So, what is the source of gain of the performance? To
answer this question, we need to analyze the main differences
between our method and previous ones. As mentioned above, the
main differences lie in several folds.

First, pix-wise sampling collects more invariant characteristics
of one subject. As in Fig. 7(b), the accuracy rapidly decreases with
the sampling step increasing. In theory, the dense sampling leads
to better separability for pooled features because the variance of
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Fig. 6. Performance comparison of different combinations of encoding methods with pooling methods.
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Table 1
Face verification comparison with the state-of-the-art methods on the LFW
benchmark under restrict protocol (mean accuracy).

Method Mean accuracy (%)

V1-like/MKL funneled [45] 79.35
Hybrid, aligned [46] 83.98
LDML, funneled [31] 79.27
Attibute and Simile classifiers [47] 85.29
Multiple LE þ comp [5] 84.45
CSML þ SVM, aligned [28] 88.00
DML-eig combined, funneled aligned [29] 85.65

SELDsþDML 88.40
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conditional distributions decreases with the increase of samplings
(refer the details in Section 4.2.3).

Second, sparse regression chooses multiple visual words to
reconstruct each patch and thus avoids the ambiguity of repre-
sentation. Compared with hard quantization which assigns the
single nearest atom as the agent, the traditional soft quantization
avoids the uncertainty by weighting the local neighbors. Different
from HQ and SQ, SELD computes the contributions of atoms by a
regression model, where the atom with more contribution is
endowed with a larger weight.

Third, sum-pooling not only provides the statistical information
of one subject but also weakens the effect of misalignment.
Theoretical analysis (in Section 4.2.3) demonstrates that sum-
pooling is more suitable for pooling pixel-wise codes than max-
pooling.

Besides, in the task of face verification, we can reach some
additional conclusions: (1) the choice of training data seems not
crucial to dictionary learning due to patches repetition across
different datasets; (2) the dictionary learnt from K-means cluster-
ing has a comparable performance with that from K-SVD for those
classic encoding methods; and (3) compared with sparse coding,
local linear regression not only achieves a comparable perfor-
mance but also has a faster encoding procedure.

Furthermore, by combining with DML, multiple block-
partitioning SELDs achieve a competitive accuracy against the
state-of-the-art methods on LFW database. Nevertheless, SELD is
not limited to face verification, and also can be used in object
classification.
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