
Sketching Image Gist: Human-Mimetic
Hierarchical Scene Graph Generation

Wenbin Wang1,2 , Ruiping Wang1,2(B) , Shiguang Shan1,2 ,
and Xilin Chen1,2

1 Key Laboratory of Intelligent Information Processing of Chinese Academy
of Sciences (CAS), Institute of Computing Technology, CAS, Beijing 100190, China

wenbin.wang@vipl.ict.ac.cn, {wangruiping,sgshan,xlchen}@ict.ac.cn
2 University of Chinese Academy of Sciences, Beijing 100049, China

Abstract. Scene graph aims to faithfully reveal humans’ perception of
image content. When humans analyze a scene, they usually prefer to
describe image gist first, namely major objects and key relations in a
scene graph. This humans’ inherent perceptive habit implies that there
exists a hierarchical structure about humans’ preference during the scene
parsing procedure. Therefore, we argue that a desirable scene graph
should be also hierarchically constructed, and introduce a new scheme
for modeling scene graph. Concretely, a scene is represented by a human-
mimetic Hierarchical Entity Tree (HET) consisting of a series of image
regions. To generate a scene graph based on HET, we parse HET with
a Hybrid Long Short-Term Memory (Hybrid-LSTM) which specifically
encodes hierarchy and siblings context to capture the structured informa-
tion embedded in HET. To further prioritize key relations in the scene
graph, we devise a Relation Ranking Module (RRM) to dynamically
adjust their rankings by learning to capture humans’ subjective percep-
tive habits from objective entity saliency and size. Experiments indicate
that our method not only achieves state-of-the-art performances for scene
graph generation, but also is expert in mining image-specific relations
which play a great role in serving downstream tasks.

Keywords: Image gist · Key relation · Hierarchical Entity Tree ·
Hybrid-LSTM · Relation Ranking Module

1 Introduction

In an effort to thoroughly understand a scene, scene graph generation (SGG)
[10,42] in which objects and pairwise relations should be detected, has been on
the way to bridge the gap between low-level recognition and high-level cogni-
tion, and contributes to tasks like image captioning [25,40,44], VQA [1,36], and
visual reasoning [31]. While previous works [16,17,28,36,39,42,43,49,50,53] have
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Fig. 1. Scene graphs from existing methods shown in (a) and (b) fail in sketc.hing the
image gist. The hierarchical structure about humans’ perception preference is shown in
(f), where the bottom left highlighted branch stands for the hierarchy in (e). The scene
graphs in (c) and (d) based on hierarchical structure better capture the gist. Relations
in (a) and (b), and purple arrows in (c) and (d), are top-5 relations, while gray ones
in (c) and (d) are secondary. (Color figure online)

pushed this area forward, the generated scene graph may be still far from per-
fect, e.g., they seldom consider whether the detected relations are what humans
want to convey from the image or not. As a symbolic representation of an image,
the scene graph is expected to record the image content as complete as possible.
More importantly, a scene graph is not just for being admired, but for support-
ing downstream tasks, such as image captioning, where a description is supposed
to depict the major event in the image, or the namely image gist. This char-
acteristic is also one of the humans’ inherent habits when they parse a scene.
Therefore, an urgently needed feature of SGG is to assess the relation importance
and prioritize the relations which form the major events that humans intend to
preferentially convey, i.e., key relations. This is seldom considered by existing
methods. What’s worse, the universal phenomenon of unbalanced distribution
of relationship triplets in mainstream datasets exacerbates the problem that the
major event cannot be found out. Let’s study the quality of top relations pre-
dicted by existing state-of-the-art methods (e.g., [49]) and check whether they
are “key” or not. In Fig. 1(a)(b), two scene graphs shown with top-5 relations
for image A and B are mostly the same although major events in A and B are
quite different. In other words, existing methods are deficient in mining image-
specific relations, but biased towards trivial or self-evident ones (e.g., 〈woman,
has, head〉 can be obtained from commonsense without observing the image),
which fail in conveying image gist (colored parts in ground truth captions in
Fig. 1), and barely contribute to downstream tasks.

Any pair of objects in a scene can be considered relevant, at least in terms of
their spatial configurations. Faced with such a massive amount of relations, how
do humans choose relations to describe the images? Given picture (ii) in Fig. 1(e),
a zoom-in sub-region of picture (i), humans will describe it with 〈woman, riding,
bike〉, since woman and bike belong to the same perceptive level and their inter-
action forms the major event in (ii). When it comes to picture (iii), the answers
would be 〈woman, wearing, helmet〉 and 〈bag, on, woman〉, where helmet and bag
are finer details of woman and belong to an inferior perceptive level. It suggests
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that there naturally exists a hierarchical structure about humans’ perception
preference, as shown in Fig. 1(f).

Inspired by observations above, we argue that a desirable scene graph should
be hierarchically constructed. Specifically, we represent the image with a human-
mimetic Hierarchical Entity Tree (HET) where each node is a detected object
and each one can be decomposed into a set of finer objects attached to it. To gen-
erate the scene graph based on HET, we devise Hybrid Long Short-Term Memory
(Hybrid-LSTM) to encode both hierarchy and siblings context [36,49] and cap-
ture the structured information embedded in HET, considering that important
related pairs are more likely to be seen either inside a certain perceptive level
or between two adjacent perceptive levels. We further intend to evaluate the
performances of different models on key relation prediction but the annotations
of key relations are not directly available from existing datasets. Therefore, we
extend Visual Genome (VG) [13] to VG-KR dataset which contains indicative
annotations of key relations by drawing support from caption annotations in
MSCOCO [21]. We devise a Relation Ranking Module to adjust the rankings of
relations. It captures humans’ subjective perceptive habits from objective entity
saliency and size, and achieves ultimate performances on mining key relations.1

2 Related Works

Scene Graph Generation (SGG) and Visual Relationship Detection
(VRD), are the two most common tasks aiming at extracting interaction between
two objects. In the field of VRD, various studies [3,15,24,27,46,47,50–52] mainly
focus on detecting each relation triplet independently rather than describe the
structure of the scene. The concept of scene graph is firstly proposed in [10]
for image retrieval. Xu et al. [42] define SGG task and creatively devise mes-
sage passing mechanism for scene graph inference. A series of succeeding works
struggle to design various approaches to improve the graph representation. Li
et al. [17] induce image captions and object information to jointly address mul-
titasks. [22,36,39,49] draw support from useful context construction. Yang et
al. [43] propose Graph-RCNN to embed the structured information. Qi et al. [28]
employ a self-attention module to embed a weighted graph representation. Zhang
et al. [53] propose contrastive losses to resolve the related pair configuration
ambiguity. Zareian et al. [48] creatvely treat the SGG as an edge role assign-
ment problem. Recently, some methods try to borrow advantages from using
knowledge [2,5] or causal effect [35] to diversify the predicted relations. Liang et
al. [19] prune the dominant and easy-to-predict relations in VG to alleviate the
annihilation problem of rare but meaningful relations.

Structured Scene Parsing, has been paid much attention in pursuit of higher-
level scene understanding. [6,20,30,33,45,55] construct various hierarchical
structures for their specific tasks. Unlike existing SGG studies that indiscrimi-
nately detect relations no matter whether they are concerned by humans or not,
1 Source code and dataset are available at http://vipl.ict.ac.cn/resources/codesor

https://github.com/Kenneth-Wong/het-eccv20.git.

http://vipl.ict.ac.cn/resources/codes
https://github.com/Kenneth-Wong/het-eccv20.git
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our work introduces the idea of hierarchical structure into SGG task, and try to
give priority to detect key relations, then the trivial ones for completeness.

Saliency vs. Image Gist. An extremely rich set of studies [8,14,23,37,38,54]
focus on analyzing where humans gaze and find visually salient objects (high
contrast of luminance, hue, and saturation, center position [9,12,41], etc..). It’s
notable that the visually salient objects are related but not equal to objects
involved in image gist. He et al. [7] explore gaze data and find that only 48% of
fixated objects are referred in humans’ descriptions about the image, while 95%
of objects referred in descriptions are fixated. It suggests that objects referred
in a description (i.e., objects that humans think important and should form the
major events/image gist) are almost visually salient and reveal where humans
gaze, but what humans fixate (i.e., visually salient objects) are not always what
they want to convey. We provide some examples in supplementary materials to
help to understand this finding. Naturally, we need to emphasize that the levels
in our HET reflect the perception priority level rather than the object saliency.
Besides, this finding supports us to obtain the indicative annotations of key
relations with the help of image caption annotations.

3 Proposed Approach

3.1 Overview

The scene graph G = {O,R} of an image I contains a set of entities O =
{oi}Ni=1 and their pairwise relations R = {rk}Mk=1. Each rk is a triplet 〈oi, pij , oj〉
where pij ∈ P and P is the set of all predicates. As illustrated in Fig. 2, our
approach can be summarized into four steps. (i) We apply Faster R-CNN [29]
with VGG16 [32] backbone to detect all the entity proposals and each of them
possesses its bounding box bi ∈ R

4, 4,096-dimensional visual feature vi, and
the class probability vector qi from the softmax output. (ii) In Sect. 3.2, HET
is constructed by organizing the detected entities according to their perceptive
levels. (iii) In Sect. 3.3, we design the Hybrid-LSTM network to parse HET,
which firstly encodes the structured context then decodes it for graph inference.
(iv) In Sect. 3.4, we improve the scene graph generated in (iii) with our devised
RRM which further adjusts the rankings of relations and shifts the graph focus
to the relations between entities that are close to top perceptive levels of HET.

3.2 Het Construction

We aim to construct a hierarchical structure whose top-down levels are accord
with the perceptive levels of humans’ inherent scene parsing hierarchy. From a
massive number of observations, it can be found that entities with larger sizes
are relatively more likely to form the major events in a scene (this will be proved
effective through experiments). Therefore, we arrange larger entities as close to
the root of HET as possible. Each entity can be decomposed into finer entities
that make up the inferior level.
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Fig. 2. An overview of our method. An object detector is firstly applied to give support
to HET construction. Then Hybrid-LSTM is leveraged to parse HET, and specifically
contains 4 processes, (a) entity context encoding, (b) relation context encoding, (c)
entity context decoding, and (d) relation context decoding. Finally, RRM predicts a
ranking score for each triplet which further prioritizes the key relations in the scene
graph. (Color figure online)

Concretely, HET is a multi-branch tree T with a virtual root o0 standing
for the whole image. All the entities are sorted in descending order according to
their sizes and we get an orderly sequence {oi1 , oi2 , . . . , oiN }. For each entity oin ,
we consider entities with larger size, {oim}, 1 ≤ m < n, and calculate the ratio

Pnm =
I (oin , oim)

A(oin)
, (1)

where A(·) denotes the size of the entity and I(·, ·) is the intersection area of two
entities. If Pnm is larger than threshold T , oim will be a candidate parent node
of oin since oim contains most part of oin . If there is no candidate, the parent
node of oin is set as o0. If there are more than one, we further determine the
parent with two alternative strategies:

Area-first Strategy (AFS). Considering that entity with a larger size has a
higher probability to contain more details or components, the candidate with
the largest size is selected to be a parent node.

Intersection-first Strategy (IFS). We compute ratio

Qnm =
I (oin , oim)

A(oim)
. (2)

A larger Qnm means that oin is relatively more important to oim than to other
candidates. Therefore, oim where m = arg maxk Qnk is chosen as parent of oin .

3.3 Structured Context Encoding and Scene Graph Generation

The interpretability of HET implies that important relations are more likely to
be seen between entities either inside a certain level or from two adjacent levels.
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Therefore, both hierarchical connection [36] and sibling association [49] are useful
for context modeling. Our Hybrid-LSTM encoder is proposed, which consists of
a bidirectional multi-branch TreeLSTM [34] (Bi-TreeLSTM) for encoding the
hierarchy context, and a bidirectional chain LSTM [4] (Bi-LSTM) for encoding
the siblings context. We use two identical Hybrid-LSTM encoders to encode two
types of context for each entity, one is entity context which helps predict the
information of entity itself, and the other is relation context which plays a role
in inferring the relation when interacting with other potential relevant entities.
For brevity we only provide a detailed introduction of entity context encoding
(Fig. 2(a)). Specifically, the input feature xi of each node oi is concatenation of
visual feature vi and weighted sum of semantic embedding vectors, zi = W

(1)
e qi,

where W
(1)
e is word embedding matrix initialized from GloVe [26]. For the root

node o0, v0 is obtained with the whole-image bounding box, while z0 is initialized
randomly.

The hierarchy context (blue arrows in Fig. 2(a)) is encoded as:

C = BiTreeLSTM({xi}Ni=0), (3)

where C = {ci}Ni=0 and each ci =
[−→
hT
i ;

←−
hT
i

]
is the concatenation of the top-down

and bottom-up hidden states of Bi-TreeLSTM:

−→
hT
i = TreeLSTM

(
xi,

−→
hT
p

)
, (4a)

←−
hT
i = TreeLSTM

(
xi,

{←−
hT
j

∣∣∣j ∈ C(i)
})

, (4b)

where C(·) denotes the set of children nodes while subscript p denotes the parent
of node i.

The siblings context (red arrows in Fig. 2(a)) is encoded within each set of
children nodes which share the same parent:

S = BiLSTM({xi}Ni=0), (5)

where S = {si}Ni=0 and each si =
[−→
hL
i ;

←−
hL
i

]
is concatenation of forward and

backward hidden states of Bi-LSTM:
−→
hL
i = LSTM

(
xi,

−→
hL
l

)
,

←−
hL
i = LSTM

(
xi,

←−
hL
r

)
, (6)

where l and r stand for left and right sibling which share the same parent with
i. We further concatenate hierarchy and siblings context to obtain the entity
context, fO

i = [ci; si]. Missing branches or siblings are padded with zero vectors.
The relation context is encoded (Fig. 2(b)) in the same way as entity context

except that the input of each node is replaced by {fO
i }Ni=0 . Another Hybrid-

LSTM encoder is applied to get the relation context {fR
i }Ni=0.

To generate a scene graph, we should decode the context to obtain entity
and relation information. In HET, a child node strongly depends on its parent,
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i.e., information of parent node is helpful for prediction of child node. Therefore,
to predict entity information, we decode entity context in a top-down manner
following Eq. (4a) as shown in Fig. 2(c). For node oi, the input xi in Eq. (4a)
is replaced with [fO

i ;W (2)
e qp], where W

(2)
e is word embedding matrix and qp

is the predicted class probability vector of the parent of oi. The output hidden
state is fed into a softmax classifier and bounding box regressor to predict entity
information of oi. To predict the predicate pij between oi and oj , we feed fR

ij =
[fR

i ;fR
j ] to an MLP classifier (Fig. 2(d)). As a result, a scene graph is generated,

and for each triplet containing subject oi, object oj and predicate pij , we obtain
their scalar scores si, sj , and sij .

3.4 Relation Ranking Module

So far, we obtain the hierarchical scene graph based on HET. As we collect
the key relation annotations (Sect. 4.1), we intend to further maximize the per-
formance on mining key relations with supervised information, and explore the
advantages brought by HET. Consequently, we design a Relation Ranking Mod-
ule (RRM) to prioritize key relations. As analyzed in Related Works, regions of
humans’ interest can be tracked under the guidance of visual saliency although
they do not always form the major events that humans want to convey. Besides,
the size, which guides HET construction, not only is an important reference for
estimating the perceptive level of entities, but also is found helpful to rectify
some misleadings in humans’ subjective assessment on the importance of rela-
tions (see supplementary materials). Therefore, we propose to learn to capture
humans’ subjective assessment on the importance of relations under the guidance
of visual saliency and entity size information.

We firstly employ DSS [8] to predict the pixel-wise saliency map (SM) S for
each image. To effectively collect entity size information, we propose a pixel-wise
area map (AM) A. Given the image I and its detected N entities {oi}Ni=1 with
bounding boxes {bi}Ni=1 (specially o0 and b0 for the whole image), the value axy

of each position (x, y) on A is defined as the minimum normalized size of entities
which cover (x, y):

axy =

⎧
⎪⎨
⎪⎩

min

{
A(oi)
A(o0)

∣∣∣∣∣i ∈ X
}

, if X �= ∅

0, otherwise,

(7)

where X = {i|(x, y) ∈ bi, 0 < i ≤ N}. The sizes of both S and A are the same as
that of input image I. We apply adaptive average pooling (AAP(·)) to smooth
and down-sample these two maps to align with the shape of conv5 feature map
F from Faster-RCNN, and obtain the attention embedded feature map FS :

FS = F 
 (AAP(S) + AAP(A)), (8)

where 
 is the Hadamard product.
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We predict a score for each triplet to adjust their rankings. The input contains
visual representation for a triplet, vij ∈ R

4096, which is obtained by RoI Pooling
on FS . Besides, the geometric information is also an auxiliary cue for estimating
the importance. For a triplet containing subject box bi and object box bj , the
geometric feature gij is defined as a 6-dimensional vector following [11]:

gij =

[
xj − xi√

wihi

,
yj − yi√

wihi

,

√
wjhj

wihi
,
wi

hi
,
wj

hj
,
bi ∩ bj
bi ∪ bj

]
, (9)

which is projected to a 256-dimensional vector and concatenated with vij ,
resulting in the final representation for a relation rij = [vij ;W (g)gij ] where
W (g) ∈ R

256×6 is projection matrix. Then we use a bi-directional LSTM to
encode global context among all the triplets so that ranking score of each triplet
can be reasonably adjusted considering scores of other triplets. Concretely, the
ranking score tij for a pair (oi, oj) is achieved as:

{hR
ij} = BiLSTM ({rij}) , (10)

tij = W
(r)
2 ReLU(W (r)

1 hR
ij ). (11)

W
(r)
1 and W

(r)
2 are weights of two fully connected layers. The ranking score is

fused with classification scores so that both the confidences of three components
of a triplet and ranking priority are considered, resulting in the final ranking
confidence φij = si · sj · sij · tij , which is used for re-ranking the relations.

3.5 Loss Function

We adopt the cross-entropy loss for optimizing Hybrid-LSTM networks. Let e′

and l′ denote the predicted label of entity and predicate respectively, e and l
denote the ground truth labels. The loss is defined as:

LCE = Lentity + Lrelation = − 1
Z1

∑
i

e′
i log(ei) − 1

Z2

∑
i

∑
j �=i

l′ij log(lij). (12)

When the RRM is applied, the final loss function is the sum of LCE and
ranking loss L(K,N ), which is used to maximize the margin between the ranking
confidences of key relations and those of secondary ones:

LFinal = LCE + L(K,N ) = LCE +
1
Z3

∑
r∈K,r′∈N

max(0, γ − φr + φr′), (13)

where γ denotes margin parameter, K and N stand for the set of key and sec-
ondary relations, r and r′ are relations sampled from K and N with ranking
confidences φr and φr′ . Z1, Z2, and Z3 are normalization factors.
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4 Experimental Evaluation

4.1 Dataset, Evaluation and Settings

VRD [24], is the benchmarking dataset for visual relationship detection task,
which contains 4,000/1,000 training/test images and covers 100 object categories
and 70 predicate categories.

Visual Genome (VG), is a large-scale dataset with rich annotations of objects,
attributes, dense captions and pairwise relationships, containing 75,651/32,422
training/test images. We adopt the most widely used version of VG, namely
VG150 [42], which covers 150 object categories and 50 predicate categories.

VG200 and VG-KR. We intend to collect the indicative annotations of key
relations based on VG. Inspired by the finding illustrated in Related Works,
we associate the relation triplets referred in caption annotations in MSCOCO
[21] with those from VG. The details of our processing and more statistics are
provided in supplementary materials.

Evaluation, Settings, and Implementation Details. For conventional SGG
following triplet-match rule (only if three components of a triplet match the
ground truth will it be a correct one), we adopt three universal protocols [42]:
PREDCLS, SGCLS, and SGGEN. All protocols use Recall@K (R@K = 20, 50,
100) as a metric. When evaluating key relation prediction, there are some varia-
tions. First, we only evaluate with PREDCLS and SGCLS protocols to eliminate
the interference of errors from object detector, and add a tuple-match rule (only
the subject and object are required to match the ground truth) to investigate the
ability to find proper pairs. Second, we introduce a new metric, Key Relation
Recall (kR@K), which computes recall rate on key relations. As the number of
key relations is usually less than 5 (see supplementary materials), the K in kR@K
is set to 1 and 5. When evaluating on VRD, we use RELDET and PHRDET [47],
and report R@50 and R@100 at 1, 10, and 70 predicates per related pair. The
details about the hyperparameters settings and implementation are provided in
supplementary materials.

4.2 Ablation Studies

Ablation studies are separated into two sections. The first part is to explore
some variants of HET construction. We conduct these experiments on VG150.
The complete version of our model is HetH, which is configured with IFS and
Hybrid-LSTM. The second part is an investigation into the usage of SM and
AM in RRM. Experiments are carried out on VG-KR. The complete version is
HetH-RRM, whose implementation follows Eq. (8).

Ablation study on HET construction. We firstly compare AFS and IFS
for determining the parent node. Then we investigate the effectiveness of the
chain LSTM encoder in Hybrid-LSTM. The ablative models mentioned above
are shown in Table 1 as HetH-AFS (i.e. replace IFS by AFS), and HetH
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Table 1. Results table (%) on VG150 and VG200. The results of the full version of
our method are highlighted.

R@ SGGEN SGCLS PREDCLS

20 50 100 20 50 100 20 50 100

VG150 VRD [24] – 0.3 0.5 – 11.8 14.1 – 27.9 35.0

IMP [42] - 3.4 4.2 – 21.7 24.4 – 44.8 53.0

IMP† [42,49] 14.6 20.7 24.5 31.7 34.6 35.4 52.7 59.3 61.3

Graph-RCNN [43] – 11.4 13.7 – 29.6 31.6 – 54.2 59.1

MemNet [39] 7.7 11.4 13.9 23.3 27.8 29.5 42.1 53.2 57.9

MOTIFS [49] 21.4 27.2 30.3 32.9 35.8 36.5 58.5 65.2 67.1

KERN [2] – 27.1 29.8 – 36.7 37.4 – 65.8 67.6

VCTree-SL [36] 21.7 27.7 31.1 35.0 37.9 38.6 59.8 66.2 67.9

HetH-AFS 21.2 27.1 30.5 33.7 36.6 37.3 58.1 64.7 66.6

HetH w/o chain 21.5 27.4 30.7 32.9 35.9 36.7 57.5 64.5 66.5

HetH 21.6 27.5 30.9 33.8 36.6 37.3 59.8 66.3 68.1

VG200 MOTIFS [49] 15.2 19.9 22.8 24.5 26.7 27.4 52.5 59.0 61.0

VCTree-SL [36] 14.7 19.5 22.5 24.2 26.5 27.1 51.9 58.4 60.3

HetH 15.7 20.4 23.4 25.0 27.2 27.8 53.6 60.1 61.8

Table 2. Results table (%) of key relation prediction on VG-KR.

kR@ Triplet match Tuple match

SGCLS PREDCLS SGCLS PREDCLS

1 5 1 5 1 5 1 5

VCTree-SL 5.7 14.2 11.4 30.2 8.4 22.2 16.1 46.4

MOTIFS 5.9 14.5 11.3 30.0 8.5 21.8 16.0 46.2

HetH 6.1 15.1 11.6 30.4 8.6 22.7 16.4 47.1

MOTIFS-RRM 8.6 16.4 16.7 33.8 13.8 26.3 27.9 57.1

HetH-RRM 9.2 17.1 17.5 35.0 14.6 27.3 28.9 59.1

RRM-Base 8.4 16.8 16.2 33.7 13.4 26.8 26.6 57.2

RRM-SM 9.0 16.9 17.2 34.5 14.3 27.1 28.6 58.7

RRM-AM 8.9 16.9 16.9 34.4 14.1 27.0 28.1 58.2

w/o chain. We observe that using IFS together with Hybrid-LSTM encoder
has the best performances, which indicates that HET would be more reasonable
using IFS. It’s noteworthy that if the Bi-TreeLSTM encoder is abandoned, the
Hybrid-LSTM encoder would almost degenerate to MOTIFS. Therefore, through
comparisons between HetH and MOTIFS, HetH and HetH w/o chain, it implies
that both hierarchy and siblings context should be encoded in HET.
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Table 3. Results table (%) on VRD.

R@ RELDET PHRDET

k=1 k=10 k=70 k=1 k=10 k=70

50 100 50 100 50 100 50 100 50 100 50 100

ViP [15] 17.32 20.01 — – – – 22.78 27.91 – – – –

VRL [18] 18.19 20.79 – – – – 21.37 22.60 – – – –

KL-Dist [47] 19.17 21.34 22.56 29.89 22.68 31.89 23.14 24.03 26.47 29.76 26.32 29.43

Zoom-Net [46] 18.92 21.41 – – 21.37 27.30 24.82 28.09 – – 29.05 37.34

RelDN-L0 [53] 24.30 27.91 26.67 32.55 26.67 32.55 31.09 36.42 33.29 41.25 33.29 41.25

RelDN [53] 25.29 28.62 28.15 33.91 28.15 33.91 31.34 36.42 34.45 42.12 34.45 42.12

HetH 22.42 24.88 26.88 31.69 26.88 31.81 30.69 35.59 35.47 42.94 35.47 43.05

Fig. 3. Qualitative Results of HetH and HetH-RRM. In (e), the pink entities are
involved in top-5 relations, and the purple arrows are key relations matched with
ground truth. The purple numeric tags next to the relations are the rankings, and “1”
means that the relation gets the highest score. (Color figure online)

Ablation study on RRM. In order to explore the effectiveness of saliency
and size, we ablate HetH-RRM with the following baselines: (1) RRM-Base:
vij is extracted from F rather than FS , (2) RRM-SM: only S is used, and (3)
RRM-AM: only A is used. Results in Table 2 suggest that both saliency and
size information indeed contributes to discovering key relations, and the effect of
saliency is slightly better than that of the size. The hybrid version achieves the
highest performances. From the following qualitative analysis, we can see that
with the guidance of saliency and rectification effect of size, RRM further shifts
the model’s attention to key relations significantly.

4.3 Comparisons with State-of-the-Arts

For scene graph generation, we compare our HetH with the following state-of-
the-art methods: VRD [24] and KERN [2] use knowledge from language or sta-
tistical correlations. IMP [42], Graph-RCNN [43], MemNet [39], MOTIFS
[49] and VCTree-SL [36] mainly devise various message passing methods for
improving graph representations. For key relation prediction, we mainly eval-
uate two latest works, MOTIFS and VCTree-SL on VG-KR. Besides, we fur-
ther incorporate RRM to MOTIFS, namely MOTIFS-RRM, to explore the
transferability of RRM. Results are shown in Table 1 and 2. We give statistical
significance of the results in the supplementary materials.
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Quantitative Analysis. In Table 1, when evaluated on VG150, HetH domi-
nantly surpasses most methods. Compared to MOTIFS and VCTree-SL, HetH
using multi-branch tree structure outperforms MOTIFS and yields comparable
recall rate with VCTree-SL which uses a binary tree structure. It indicates that
hierarchical structure is superior to plain one in terms of modeling context. We
observe that HetH achieves better performances compared to VCTree-SL under
PREDCLS protocol, while there exists a slight gap under SGCLS and SGGEN
protocols. This is mainly because our tree structure is generated with artifi-
cial rules and some incorrect subtrees inevitably emerge due to occlusion in 2D
images, while VCTree-SL dynamically adjusts its structure in pursuit of higher
performances. Under SGCLS and SGGEN protocols in which object information
is fragmentary, it is difficult for HetH to rectify the context encoded from wrong
structures. However, we argue that our interpretable and natural multi-branch
tree structure is also adaptive to the situation when there is an increment of
object and relation categories but fewer data. It can be seen from evaluation
results on VG200 that the HetH outperforms MOTIFS by 0.67 mean points
and VCTree-SL by 1.1 mean points. On the contrary, in this case, the data are
insufficient for dynamic structure optimization.

As SGG task is highly related to VRD task, we apply HetH on VRD and the
comparison results are shown in Table 3. Both the HetH and RelDN [53] use pre-
trained weights on MSCOCO, while only [46] states that they use ImageNet pre-
trained weights and others remain unknown. It’s shown that our method yields
competitive results and even surpasses state-of-the-arts under some metrics.

When it comes to key relation prediction, we directly evaluate HetH,
MOTIFS, and VCTree-SL on VG-KR. As shown in Table 2, HetH substan-
tially performs better than other two competitors, suggesting that the structure
of HET provides hints for judging the importance of relations, and parsing the
structured information in HET indeed capture humans’ perceptive habits.

In pursuit of ultimate performances on mining key relations, we jointly opti-
mize the HetH with RRM under the supervision of key relation annotations
in VG-KR. From Table 2, both HetH-RRM and MOTIFS-RRM achieve signif-
icant gains, and HetH-RRM is better than MOTIFS-RRM, which proves the
superiority of HetH again, and shows excellent transferability of RRM.

Qualitative Analysis. We visualize intermediate results in Fig. 3(a-d). HET
is well constructed and close to human’s analyzing process. In the area map,
regions of arm, hand, and foot get small weights because of their small sizes.
Actually, relations like 〈lady, has, arm〉 are indeed trivial. As a result, RRM
suppresses these relations. More cases are provided in supplementary materials.

4.4 Analyses About het

We conduct additional experiments to validate whether HET has a potential to
reveal humans’ perceptive habits. As shown in Fig. 4(a), we compare the depth
distribution of top-5 predicted relations (represented by tuple (doi , doj ) con-
sisting of the depths of two entities, and the depth of root is defined as 1.)
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(a) (b)

Fig. 4. (a) Depth distribution of top-5 pre-
dicted relations. (b) The ranking confidence of
relations from different depths obtained from
RRM-base. Sampling is repeated five times.

Strtg. Metric HetH-RRM

EP
kR@1 17.5
kR@5 35.0
speed 0.22

SP
kR@1 15.8
kR@5 31.2
speed 0.18

Fig. 5. Comparison between
EP and SP. The inference
speed (seconds/image) is eval-
uated with a single TITAN Xp
GPU).

of HetH, RRM-base and HetH-RRM. After applying RRM, there is a signifi-
cant increment on the ratio of depth tuples (2, 2) and (2, 3), and a drop on
(3, 3). This phenomenon is also observed in Fig. 3(e). Previous experiments have
proved that RRM obviously upgrades the rankings of key relations. In other
words, relations which are closer to the root of HET are regarded as key ones
by RRM. We also analyze the ranking confidence (φ) of relations from different
depths with the RRM-base model (to eliminate the confounding effect caused by
AAP information). We sample 10,000 predicted relation triplets from each depth
five times. In Fig. 4(b), the ranking confidence decreases as the depth increases.
Therefore, different levels of HET indeed indicate different perceptive impor-
tance of relations. This characteristic makes it possible to reasonably adjust the
scale of a scene graph. If we want to limit the scale of a scene graph but keep
its ability to sketc.h image gist as far as possible, it is feasible for our hierarchi-
cal scene graph since we just need to cut off some secondary branches of HET,
but is difficult to realize in an ordinary scene graph. We give an example in the
supplementary materials.

Besides, different from traditional Exhausted Prediction (EP, predict
relation for every pair of entities) during inference stage, we adopt a novel Struc-
tured Prediction (SP) strategy, in which we only predict relations between
parent and children nodes, and any two sibling nodes that share the same par-
ent. In Fig. 5, we compare the performances and inference speed between EP
and SP for HetH-RRM. Despite the slight gap in terms of performances, the
interpretability of connections in HET makes SP feasible to take a further step
towards efficient inference, getting rid of the O(N2) complexity [16] of EP. Fur-
ther researches need to be conducted to balance performance and efficiency.
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Table 4. Results of image captioning on VG-KR.

Num. Model B@1 B@2 B@3 B@4 ROUGE-L CIDEr SPICE Avg. Growth

all GCN-LSTM 72.0 54.7 40.5 30.0 52.9 91.1 18.1

20 HetH-Freq 73.1 55.7 41.0 30.1 53.5 94.0 18.8 0.06

HetH 74.9 58.4 43.9 32.8 54.9 101.7 19.8

HetH-RRM 75.0 58.2 43.7 32.7 55.1 102.2 19.9

5 HetH-Freq 70.7 53.2 38.6 28.0 51.7 84.4 17.2 1.57

HetH 72.5 55.4 41.2 30.5 53.1 92.6 18.5

HetH-RRM 73.7 56.7 42.3 31.5 54.0 97.5 19.1

2 HetH-Freq 68.1 50.8 36.8 26.5 50.2 76.5 15.5 2.10

HetH 70.8 53.4 39.2 28.7 51.8 86.4 17.6

HetH-RRM 72.3 55.2 41.0 30.4 53.1 92.2 18.4

5 Experiments on Image Captioning

Do key relations really make sense? We conduct experiments on one of the
downstream tasks of SGG, i.e., image captioning, to verify it.2

Experiments are conducted on VG-KR since it has caption annotations from
MSCOCO. To generate captions, we select different numbers of predicted top
relations and feed them into the LSTM backend following [44]. We reimplement
the complete GCN-LSTM [44] model and evaluate it on VG-KR since it’s one
of the state-of-the-art methods and is most related to us. As shown in Table 4, our
simple frequency baseline, HetH-Freq (the rankings of relations are accord with
their frequency in training data), with 20 top relations input, outperforms GCN-
LSTM because GCN-LSTM conducts graph convolution using relations as edges,
which is not as effective as our method in terms of making full use of relation
information. After applying RRM, there is consistent performance improvement
on overall metrics. This improvement is more and more significant as the number
of input top relations reduces. It’s reasonable since the impact of RRM centers
at top relations. It suggests that our model provides more essential content with
as few relations as possible, which contributes to efficiency improvement. The
captions presented in Fig. 3(e) shows that key relations are more helpful for
generating a description that highly fits the major events in an image.

6 Conclusion

We propose a new scene graph modeling formulation and make an attempt to
push the study of SGG towards the target of practicability and rationalization.
We generate a human-mimetic hierarchical scene graph inspired by humans’
scene parsing procedure, and further prioritize the key relations as far as possible.

2 We briefly introduce here and details are provided in supplementary materials.
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Based on HET, a hierarchcal scene graph is generated with the assistance of our
Hybrid-LSTM. Moreover, RRM is devised to recall more key relations. Experi-
ments show outstanding performances of our method on traditional scene graph
generation and key relation prediction tasks. Besides, experiments on image cap-
tioning prove that key relations are not just for appreciating, but indeed play a
crucial role in higher-level downstream tasks.
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