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Learning to Recognize Visual Concepts for Visual
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Abstract—Solving visual question answering (VQA) task re-
quires recognizing many diverse visual concepts as the answer.
These visual concepts contain rich structural semantic meanings,
e.g., some concepts in VQA are highly related (e.g., red & blue),
some of them are less relevant (e.g., red & standing). It is very
natural for humans to efficiently learn concepts by utilizing their
semantic meanings to concentrate on distinguishing relevant con-
cepts and eliminate the disturbance of irrelevant concepts. How-
ever, previous works usually use a simple MLP to output visual
concept as the answer in a flat label space that treats all labels
equally, causing limitations in representing and using the semantic
meanings of labels. To address this issue, we propose a novel visual
recognition module named Dynamic Concept Recognizer (DCR),
which is easy to be plugged in an attention-based VQA model, to
utilize the semantics of the labels in answer prediction. Concretely,
we introduce two key features in DCR: 1) a novel structural label
space to depict the difference of semantics between concepts, where
the labels in new label space are assigned to different groups
according to their meanings. This type of semantic information
helps decompose the visual recognizer in VQA into multiple spe-
cialized sub-recognizers to improve the capacity and efficiency of
the recognizer. 2) A feature attention mechanism to capture the
similarity between relevant groups of concepts, e.g., human-related
group “chef, waiter” is more related to “swimming, running, etc.”
than scene related group “sunny, rainy, etc.”. This type of semantic
information helps sub-recognizers for relevant groups to adaptively
share part of modules and to share the knowledge between rele-
vant sub-recognizers to facilitate the learning procedure. Extensive
experiments on several datasets have shown that the proposed
structural label space and DCR module can efficiently learn the
visual concept recognition and benefit the performance of the
VQA model.

Index Terms—Visual question answering, visual concept
recognition, structural label space.

I. INTRODUCTION

V ISUAL Question Answering (VQA) [1], [5], [18], [29] is
a widely studied task that enables users to obtain useful
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Fig. 1. (a) Common VQA models usually have two parts: image grounding
and visual concept recognition. An advanced VQA system should be able to
recognize many different types of visual concepts to fit the need of a specific
question. (b) (c) (d) is three kinds of label space, i.e., the single-label classifica-
tion model (b), the multi-label binary classification model (c), and our designed
structural label space model (d). (See Section III-A for more details.)

visual information by querying a VQA system about an image.
Unlike other computer vision tasks which require the system to
understand some concepts limited to a specific field, an advanced
VQA system should be able to recognize a large variety of
visual concepts to handle a wide range of questions, as shown in
Fig. 1(a). The labels in current VQA tasks usually cover the most
commonly used types of visual concepts, e.g., objects, attributes,
actions, scenes, etc. Therefore, labels in VQA inherently contain
rich and diverse semantic meanings, and learning various visual
concepts becomes one unique challenge in the VQA task.

Previous VQA approaches mainly focus on designing sophis-
ticated attention mechanisms, while just using a simple flat label
space to represent each label, as shown in Fig. 1(b), (c). The flat
label space treats each concept as an isolated sign, so it is difficult
to distinguish one concept from others and depict the meanings
of concepts. However, humans are very good at utilizing seman-
tic meanings to learn new concepts efficiently. For example,
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Fig. 2. Basic idea of our Dynamic Concept Recognizer (DCR). The DCR
contains a set of sub-recognizers, where each sub-recognizer is responsible for
classifying one group of concepts. When answering a question, the DCR will
pick one sub-recognizer to output the answer. To capture the similarity between
different groups, we allow recognizers to adaptively share part of parameters
with their relevant recognizers.

when learning a concept (e.g. “pitcher”), we usually subcon-
sciously learn the new concept with relevant concepts together
(e.g. “batter, pitcher, catcher”) and eliminate the disturbance of
irrelevant concepts (e.g. “red, sunny”). Motivated by this idea,
we propose a structural label space to represent the semantic
meanings of the answers, as shown in Fig. 1(d). Our structural
label space organizes the labels into many groups, where the
concepts in one group have relevant semantic meanings. More
concretely, the concepts in one group classify the things from
the same perspective, e.g. “pitcher, batter” classify the people
based on their baseball positions, while “red, blue, etc.” classify
the objects based on their colors. In our label space, one concept
label is determined by two values: which group and which con-
cept. After obtaining this type of semantics, we design a novel
classification module that outputs the labels in our structural
label space, named Dynamic Concept Recognizer (DCR). The
DCR contains multiple specialized sub-recognizers, where each
sub-recognizer is responsible for classifying within a group of
concepts, as shown in Fig. 2. Compared to traditional MLP, DCR
contains larger capacity for visual recognition, and it is easier to
concentrate on learning each of the sub-recognizers related to the
question.

While the structural label space mainly aims to distinguish
the concepts belonging to different groups, it is also essential
to capture the similarity between different groups of concepts.
For example, occupation-related group “chef, waiter, etc.” is
more relevant with “swim, soccer, etc.” than “sunny, rainy, etc.”,
because distinguishing the concepts in the first two groups may
both utilize clothing information. A sophisticated model should
be able to learn the relevance between different groups to transfer
or share knowledge between classifying different groups of
concepts. To achieve this goal, we allow the sub-recognizers
to adaptively learn to share some parts of parameters with their
relevant recognizers during the training procedure, as shown in
Fig. 2 (see more details in Fig. 3(b)). Therefore, the relevant sub-
recognizers can share the knowledge between each other, which
can facilitate the training of some sub-recognizers containing
relatively few samples.

Our proposed structural label space and Dynamic Concept
Recognizer can be easily plugged on an attention-based VQA

model. Concretely, our whole VQA framework, named Dynamic
Answer Generator, is composed of three parts (see more details
in Fig. 3(a)): The first part finds the image region most related
to the question. Then, the second part predicts which group
the answer belongs to. Finally, Dynamic Concept Recognizer
activates one of its sub-recognizers that is asked by the ques-
tioner to predict the answer. Note that, besides better utilizing
the semantics of labels which can benefit the performance,
the whole framework also decomposes the VQA model into
many refined modules, e.g. module for grounding and many
sub-recognizers. Therefore, our framework inherits the advan-
tages of compositional models on robustness and transparency.
Especially for overcoming language priors (a.k.a. rely on the
superficial correlation between the question and the answer to
guess the answer), since our DCR learns a pure mapping between
the image and the visual concepts. As shown in Fig. 2, the
question information won’t disturb the recognizing of a group
of visual concepts as the answer.

To evaluate the proposed method, we conduct extensive
experiments on four popular datasets: Visual Genome [20],
GQA [15], VQA v2 [10] and VQA-CP v2 [1], and compare with
the state-of-the-art methods. The results demonstrate both the
effectiveness of our core module Dynamic Concept Recognizer
with the structural label space and the effectiveness of the whole
VQA model.

The rest of this paper is organized as follows: Section II briefly
reviews the related works of the visual question answering and
label spaces. Then, Section III introduces our proposed structural
label space and new VQA model with Dynamic Concept Rec-
ognizer. In Section IV, we provide comprehensive evaluations
of our whole VQA framework as well as the core recognition
module. Finally, Section V concludes this paper.

II. RELATED WORK

A. Visual Question Answering

Previous VQA methods mainly focus on how to ground the
proper image region related to the question. These works can
be approximately categorized into two branches by way of
formulating the grounding procedure. The first branch [2],
[9], [16], [21], [24], [32], [34], [38] proposes powerful atten-
tion mechanisms to compute the matching score between the
question and the image regions. For example, [9] introduces
compact bilinear pooling as a fusion technique to build the local
relationship between two modalities. [2] proposes a bottom-up
and top-down attention mechanism that attends the image at the
level of objects and obtain better visual feature. The second
branch [3], [4], [13], [17], [26], [37] formulates the image
grounding procedure as a multi-step spatial reasoning prob-
lem. [4], [13], [17], [31] decompose a grounding model into
several pre-defined modules, where each module is responsible
for grounding one kind of concepts, e.g., finding “red” objects.
These modules are dynamically assembled for a given question
and are used to generate the answer. [14] proposes an alternative
approach, Memory, Attention, and Composition (MAC) which
also performs multi-step reasoning and can dynamically record
and retrieve the visual information in its memory.
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Fig. 3. The architectures of the whole VQA model Dynamic Answer Generator and the core module Dynamic Concept Recognizer. (a) Dynamic Answer
Generator (DAG). Given a question and an image, DAG locates the image region related to the question and predicts the group index that determines the model to
recognize which group of concepts. Then, the DCR generates the final answer based on the attention feature and the group index. (b) Dynamic Concept Recognizer
(DCR). The DCR takes an image region feature and the group index as input. The group index indicates the DCR to activate a part of the module to output the
visual concept in the image region. To better illustrate the DCR, we show two cases that activate different parts of the module.

In contrast, this paper focuses on how to correctly generate
the concept asked by the question, after attending to the correct
image region. Previous methods mainly implement an MLP with
a flat label space to learn the mapping from the combination of
the question and the image features to the visual concept. This
type of methods has two drawbacks: 1) For performance, due to
the limitation of the flat label space in representing the meanings
of labels, these models cannot focus on distinguishing relevant
concepts to efficiently learn recognition from the question-
answer sample; 2) for robustness and transparency, these models
combine the image and the questions features to answer the
question, so they do not contain a pure visual concept recognizer
mapping from visual features to labels. Thus, previous models
have risks to overuse the questions to guess the visual concept
answers. To address these problems, we first propose a structural
label space to represent the semantic meanings of the labels.
Then, we propose a Dynamic Concept Recognizer, which is
an alternative method to generate the visual concept, to avoid
directly combining the question and visual features.

B. Label Spaces

Many works in ML, CV, and NLP fields study how to design
the label spaces to represent the relations between labels. The
most common label space is the flat label space used in stan-
dard single-label classification and multi-label binary classifi-
cation. [8], [19], [19], [28], [35], [39] propose a tree-structured
label space to represent the class hierarchy of a large number of
labels. They usually implement a top-down approach to classify
the nodes from the root to the leaves. The tree-structured label
space can be used in both single-label or multi-label classifica-
tion. [36] represents the labels in a hypercube space to build the
correlations between labels.

In this paper, we propose a label space, which organizes the
labels into many groups, to represent the relations between visual
concept labels. Our label space can be viewed as a simplified
version of tree-structured label space, which only contains two
layers, and all labels are leaf nodes. This simplified structure is
more suitable for the relations of VQA labels (less hierarchical

relations, more clustering relations). It allows our VQA model
to focus on learning one group of concepts easily.

C. Clustering the Answers or Questions

Some of the existing methods [1], [33] propose to cluster
the answers or questions and use answer type or question
type information to improve the VQA model. [33] divides all
questions into 12 different types (labeled in the TDIUC dataset)
and introduces a question type guided attention mechanism that
dynamically balances between bottom-up and top-down visual
features based on question type information. [1] uses K-means
to cluster the answers into 50 clusters. The model in [1] first
generates all visual concepts in the grounded image region, then
combines the visual concepts feature and answer type features
to output the answers.

Previous methods usually formulate the answer or question
type as a feature which provides additional information for some
specific functions, such as, selecting different types of object
features [33] or selecting concepts [1]. In contrast, we use the
semantics of answer to construct a novel label space which
allows the VQA model to utilize the semantic meanings of the
labels to facilitate the training of the VQA model.

III. METHODS

In this section, we first define the label space of our VQA
model (in Section III-A). Then, we illustrate the main framework
of the VQA model named Dynamic Answer Generator (in
Section III-B).

A. Structural Label Space for Visual Concepts

To better understand our new label space, we first recap the
definition of the label spaces in a single classification problem
and multi-class binary classification problem.

In a standard single-label classification problem, the label
space contains one discrete variable:

L = {Y }, Y ∈ {0, . . ., C − 1} (1)
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where C is the number of classes. In this setting, all classes
are assumed to be disjoint. In a multi-label binary classification
problem, the label space contains a tuple ofC discrete variables:

L = {Y1, Y2, . . ., YC}, Yi ∈ {0, 1} (2)

In this setting, all classes are considered as independent.
These flat label spaces cannot represent the semantic mean-

ings of the labels. Therefore, we create a new structured label
space to represent the semantic relations among concepts. More
specifically, we cluster the visual concepts as many groups of
labels, where each group of labels depicts the visual world from
one perspective, e.g., “male, female,” “red, black, etc.”. We
consider concepts in one group are highly related, and concepts
in different groups are independent. Formally, we let the new
label space have a tuple of G discrete variables:

L = {Y1, Y2, . . ., YG}, Yi ∈ {0, . . . , Ci − 1} (3)

where G indicates the number of groups and Ci indicates the
number of concepts in the i-th group.

Practically, we cluster the concepts in the following two steps.
First, the rough clustering result can be obtained by K-means
clustering in Glove [25] embedding space. Second, we resort to
WordNet [23] to manually fine-tune the clustering results. More
specifically, we check if the concepts in one group belong to the
same root in WordNet, if some groups omit some concepts, and
if some concepts are mistakenly assigned to groups. Then, we
manually assign misaligned concepts to proper groups. These
steps make sure that the concepts in one group classify the
visual world from the same perspective, e.g., all concepts are
related to “color” or “material,” etc. Note that, in this manually
refining procedure, we cluster the concepts only considering
their meanings without the restriction of group number. Besides,
once we get the clustering result from one dataset, it is easy
to generalize to a new dataset, because the meanings of con-
cepts won’t change much across different datasets. Therefore,
to obtain the clustering result of answers in a new dataset,
we only need to consider the additional concepts, e.g., merge
additional concepts to existing groups, or create some new
groups.

B. Dynamic Answer Generator

For Dynamic Answer Generator (DAG), the inputs to the
model are the question and the image region features that are
extracted by ResNet [12] or Faster R-CNN [30], and the goal
is to generate the correct answer (the overview of the DAG is
shown in Fig. 3(a)). Concretely, DAG is composed of three
networks: 1) Image Grounding Network that uses the entire
question to ground the image region related to the question, 2)
Group Prediction Network that distills the question information
to a group index which indicates the latter network to recognize a
specific group of concepts and 3) Dynamic Concept Recognizer
that uses the predicted group index and the grounded image
feature to predict the answer.

Image Grounding Network: We first use Faster R-CNN [2] to
extract a set of image region features X = {x1, . . . ,xk},xi ∈

RD, where k is the number of image regions. In the meantime,
every word in the question is encoded into a word vector by
using a learned word embedding. Then the question feature q is
obtained by feeding word vector sequence into a gated recurrent
unit (GRU) [7].

We calculate the weights α = {α1, . . ., αk} attending to im-
age regions, where Σk

i=1αi = 1. Concretely, we compute the
normalized matching score αi between every pair of q and
xi. The matching score can be calculated by any sophisticated
attention module, e.g. simple soft attention mechanism, compact
bi-linear pooling, or multi-step attention in [14], etc. Here, we
use simple soft attention mechanism as an example:

fatt(xi, q) = ReLU(W vxi) · ReLU(W qq) (4)

αi =
exp(fatt(xi, q))

Σk
j=1exp(fatt(xj , q))

(5)

where W v and W q are trainable parameters, which project xi

and q to the same dimension and · means dot product. Finally,
the grounded image region is calculate as:

v = Σk
i=1αixi. (6)

Group Prediction Network: GPN utilizes the image region
feature v and the question feature q to distill the information
that is used to guide the visual concept recognition (a.k.a the
group index). Note that, the image feature is also used to predict
the group index, because many questions contain not enough
information to correctly predict the group indexes, e.g. for
question “what is on the ground?”, the answer could be in many
concept groups, such as “cat, dog, etc”, “man, woman”. Thus,
the distribution over all possible group indexes p(z|q,v) can be
formulated as

fg(v, q) = ReLU(W 1v) ◦ ReLU(W 2q) (7)

p(z|q,v) = σ(W gfg(v, q)) (8)

ẑ = argmax
z∈{1,...,G}

p(z|q,v) (9)

where W 1, W 2 and W g are trainable parameters, ◦ is the
element-wise product, σ is the sigmoid function and ẑ is the
predicted group index. We use sigmoid function here to deal
with the situation that the question is ambiguous and can be
answered from different perspectives, because sigmoid function
can output multiple labels as true.

Dynamic Concept Recognizer: The goal of Dynamic Concept
Recognizer (DCR) is to classify the given group of concepts
for the given image region. The predicted concept is used as
the final answer. Concretely, the DCR is required to accomplish
multiple tasks (classifying concepts in one group corresponds to
one task), such as distinguishing colors, animals, etc. Besides,
we hope DCR can automatically learn the relevance of different
tasks from Question-Answer samples by let relevant tasks share
part of the model architecture.

To achieve this goal, we propose a multi-task module based on
two-layer MLP (as shown in Fig. 3(b).). The DCR first uses a set
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of fully connected (FC) layers to generate a set of candidate hid-
den features. Then, the DCR picks some candidate features for
one specific task by implementing the soft-attention mechanism
(supervision information of the answer implicitly encourages
modules of relevant tasks to apply similar attention values on
candidate features). Finally, the picked candidate features are
fed into an FC layer corresponding to the current task to output
the visual concept.

Formally, given the region feature v and the predicted
group index ẑ, one part of DCR is dynamically activated and
predicts the probability of visual concepts in the ẑth group
p(yẑ|v, ẑ) corresponding to the region feature, as illustrated
in Fig. 3(b). DCR first uses a set of fully connected (FC)
layers with parameters W h = {W 1

h, . . .,W
N
h } ∈ RN×D×H ,

bh = {b1h, . . ., bNh } ∈ RN×H to generate a set of candidate
visual features h = {h1, . . .,hN} ∈ RN×H given the region
feature v, where N is the number of FC layers. The calculation
of each hi can be formulated as

hi = tanh(W i
hv + bih) (10)

Then, the model picks hi for the current task ẑ as the hidden
feature to output to the next layer.

ho = ΣN
i=1rẑ,ihi (11)

where R = (rz,i)G×N are trainable parameters, and rz,i con-
trols the z-th task attend how much on everyhi andΣN

i=1rz,i = 1
for z ∈ {1, . . ., G}.

After calculating the hidden feature ho, there are G FC layers
where each FC layer is responsible for classifying one group of
concepts. DAG only activates the ẑ-th FC layer to output the
probabilities of visual concepts in the given group.

p(yẑ|v, ẑ) = softmax(W ẑ
oho) (12)

where W o = {W 1
o, . . .,W

G
o } represent the trainable parame-

ters of G FC layers. To easily train DCR for batch samples, we
need to keep the size of the probabilities to be consistent. Thus,
we design every W z

o to have the same size H ×max(Cz) (it is
easy for the network to know that the extra labels should not be
the answer).

Notably, the module of DCR for classifying non-visual con-
cepts “yes, no” (a.k.a. yes/no questions) is different from the
aforementioned visual concept modules. This module uses the
combination of image and question features to generate the
answer, rather than only image features, because “yes/no” ques-
tions require the model to compare the content of the image
and question. Concretely, for non-visual questions, we input
the combination of the image feature and the question fea-
ture fg(v,q) calculated by equation (7) to Dynamic Concept
Recognizer, rather than image feature v. In addition, the sub-
recognizer of “yes/no” questions are independent with visual
sub-recognizers (in practice, we fix the attention value for cor-
responding candidate feature, where only the attention value on
corresponding candidate feature is 1, others are 0).

Fig. 4. An illustration of our toy benchmark. For one specific sample, the
model takes the group index and an image region as input, and outputs the
corresponding visual concept. The group index can be viewed as a parsed simple
question, like “which color is it”. In addition, providing the correct image region
reduces the disturbance of image grounding model.

C. Training

For training our model, we minimize the combination of
two losses L = λLz + Ly , where Lz and Ly are the binary
cross-entropy losses of predicting group indexes and the final
answer respectively, and λ is a hyperparameter that balances
the relative weights of training two modules. Note that, during
training, the ground truth group index is fed into the DCR,
instead of the predicted group index. Since if the predicted group
index is wrong, there will be no loss to train the DCR.

IV. EXPERIMENTS

In this section, we conduct experiments on widely studied
datasets to show the effectiveness of our proposed label space,
the core module Dynamic Concept Recognizer and the whole
VQA model Dynamic Answer Generator.

A. Experiments on Visual Genome

This paper aims at improving one important sub-task of VQA,
visual recognition, so that we want to firstly purely test the
effectiveness of our proposed method on recognition, before
conducting the experiments for seeing how the VQA model
works out as a whole. To do so, we propose a simplified toy
benchmark to purely test the ability of a VQA model for recog-
nizing the visual concepts. Then, we compare the performance
of our proposed model with baselines.

1) Experiment Settings: Task description: The visual con-
cept recognition requires the model to classify many different
kinds of concepts. The standard VQA benchmark is one way
to test the performance of visual concept recognition, but many
factors impact the results, such as whether the model attends
on the correct region, whether the model correctly parses the
question. Thus, we propose a toy benchmark to test the per-
formance of visual concept recognition purely. In details, for
one sample (as shown in Fig. 4), the inputs of the model are
one image, one ground truth bounding box of an object and
one group index that indicates the model need to classify one
specific group of concepts. The group index can be viewed as
a parsed simple question, e.g., “what color is it?”. The output
should be the corresponding concept appearing in the image. We
use classification accuracy to evaluate a model.

Authorized licensed use limited to: INSTITUTE OF COMPUTING TECHNOLOGY CAS. Downloaded on June 27,2020 at 02:40:30 UTC from IEEE Xplore.  Restrictions apply. 



GAO et al.: LEARNING TO RECOGNIZE VISUAL CONCEPTS FOR VISUAL QUESTION ANSWERING WITH STRUCTURAL LABEL SPACE 499

TABLE I
SOME SAMPLES OF CONCEPT GROUPS IN CLUSTERING RESULTS

Fig. 5. Distribution of concept number among groups.

Dataset: We test the performance of visual concept recog-
nition on the Visual Genome dataset [20]. The dataset contains
108 K images annotated with bounding boxes and class names of
objects, attributes, relationships. We unpack the relationship and
attribute annotations of Visual Genome to <image, bounding
box, concept> triplets (the bounding box of the relationship
concept is the union of the bounding boxes of the object and the
subject), and filter 1,000 most frequent visual concepts in the
Visual Genome. The dataset is randomly split into train (70 K
images), val (15 K images) and test (15 K images) sets.

Concept Clustering: We first collect the union set of 1) 1,000
most frequent visual concepts in the Visual Genome, 2) all
answers in GQA dataset [15] and 3) 2,000 most frequent answers
in VQA v2 dataset [10]. Then, we cluster these concepts by
using the method illustrated in Section III-A. The experiments
in Sections IV-A, IV-B, and IV-C filter their corresponding
concepts in this clustering results to build their own concept
groups. In Table I, we show 7 groups of concepts (185 groups
in total) in visual concepts clustering results. We name every
group of concepts according to their meanings to better record
the results. In Fig. 5, we display the distribution of concept
numbers among groups. We can see that many groups contain
less than 5 concepts. This is because there are lots of paired
attribute-type concepts in our language used for distinguishing
objects from different perspectives, e.g., dark & bright, male &
female. The groups in the middle scale (e.g., 5 < group number
<= 40) are usually some complicated attributes, e.g., type of
color, or fine-grained classes, e.g., type of bag. The groups in

TABLE II
THE WEIGHTED MEAN ACCURACIES (%) OF CLASSIFYING GROUPS OF VISUAL

CONCEPTS ON VISUAL GENOME

large size (group number > 40) are mainly related to some
common objects, e.g., type of animal.

Implementation of DCR: We use the Dynamic Concept Rec-
ognizer to accomplish this task. We first use ResNet-101 [12]
to extract the feature. Then, we implement ROI align [11] with
ground truth bounding box to crop on the last layer conv feature
and feed into the DCR. Besides, we set the number of FC layers
N in the first hidden layer as 100, and the dimension of hidden
layer feature H as 100 through cross-validation. The output size
of each output FC layer max(Cz) is 35.

Baselines: The main novelty of our Dynamic Concept Rec-
ognizer is the use of new label space. Therefore, we evaluate the
models with different label spaces to show the effectiveness of
ours. We keep the extracted feature same and only change the
classification model.

• S-L: The single-label classification model (S-L) treats the
visual concepts as disjoint classes. The S-L model first
converts the group index into a 10-dimensional feature and
concatenates it on the image feature. The combined feature
is fed into an MLP to predict the answer. Besides, the model
is trained with softmax cross entropy loss.

• M-L: The multi-label binary classification model (M-L)
treats the visual concepts as independent. The M-L model
is similar to the S-L model, except the model is trained with
binary cross entropy loss.

• DCR w/o Params-Sharing: The modules for all recognition
tasks in DCR are independent, a.k.a the number of candidate
features is equal to the number of tasks, and the module of
each task uses its own candidate features.

2) Results and Analysis: Table II shows the results of the
baselines and our method on Visual Genome. The results show
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Fig. 6. Classification accuracies (%) for selected groups of concepts.

that our Dynamic Concept Recognizer can better learn to recog-
nize the visual concepts. There are mainly two reasons. First, the
structural label space let relatively dependent modules to recog-
nize different groups of concepts. Thus, each model can focus
on learning how to classify one specific group of highly related
concepts without the disturbance of other unrelated concepts.
This advantage mainly helps to recognize the visual concepts
that are relatively difficult to classify. To demonstrate this idea,
we select the results on classifying some groups of concepts,
as shown in Fig. 6. For classifying “kitchenware,” “athlete,”
“gender,” we can see that our method achieves better results.
These groups are all relatively hard to classify, compared to
“animal” group. Secondly, The correlation among the groups can
help Dynamic Concept Recognizer transform the knowledge of
classifying one group of concepts to classifying another relevant
group. The transformed knowledge can facilitate classifying
those concept groups with relatively few samples. For example,
in Visual Genome, “plane figure” and “pattern” are two groups
with relatively fewer training samples. From Fig. 6 in the paper,
we can see that our method obtains better results on classifying
these two groups of concepts. We also calculate the mean
accuracy of the groups which contain less than 100 samples.
The DCR w/o Params-Sharing achieves 47.1% accuracy, and
DCR achieves 50.3% accuracy. These experiments show that
correlation information indeed helps to learn with relatively few
samples.

In summary, the semantic meaning of the concepts is informa-
tive. Using this information in designing recognizer and building
structured label space helps the model better classify the visual
concepts, compared to the model neglecting it.

B. Experiments on GQA

1) Experiment Settings: Datasets: The GQA [15] is a re-
cent proposed large-scale visual question answering dataset that
contains 113 K real images from Visual Genome, and 1.7 M
balanced question. Their questions involve multi-step relational
reasoning, grounding, and recognizing diverse visual concepts.
In addition, GQA provides rich annotations: 1) scene graph
annotations which contain the bounding boxes, classes, and
attributes of the objects in the image, and pairwise relationships
of objects; 2) functional programs which list the series of rea-
soning steps that have to be performed to arrive at the answer.
The dataset is split into four splits, train, val, test-dev, and test
splits. In our experiments, we train models on train split and test

the performances on the other GQA splits. Note that there is a
domain shift between val split and the other splits, which may
cause a performance drop from val to test-dev and test.

Implementation: For visual concept clustering, we use the
clustering results obtained in Section IV-A. For the attention
function, we use the one in the state-of-the-art method on GQA,
MAC model [14]. We use Glove [25] as initialization of the
word embedding layer, and the embedded words are fed into a
GRU with 512d hidden states. The visual features in our model
are the object detection features provided by the GQA dataset
with sizeN × 2048 (whereN is the number of detected objects)
from a Faster R-CNN detector [30]. In Dynamic Concept Rec-
ognizer, the hyper-parameters of the module are as same as in
Experiments IV-A. Our model is trained by using the rmsprop
optimizer. We set the learning rate as 5e-5 with relative weight
λ = 0.1.

Baselines: To demonstrate the effectiveness of our proposed
DAG model, we compare our model with several baselines.

• MAC: MAC is the state-of-the-art method on GQA which
implements multi-step reasoning on the image. For visual
concept recognition, MAC combines the question and im-
age features and uses an MLP to output the answer on a
basic flat label space.

• DAG w. S-L: We replace the Dynamic Concept Recognizer
in DAG with S-L model illustrated in Section IV-A.

• DAG w. M-L: We replace the Dynamic Concept Recognizer
in DAG with M-L model illustrated in Section IV-A.

• DAG w/o Params-Sharing: We replace the Dynamic Con-
cept Recognizer in DAG with DCR w/o Params-Sharing
illustrated in Section IV-A.

2) Results and Analysis: Table III shows the performances
of the state-of-the-art methods and our method on the test split
of GQA. Table IV displays the performances of our model and
its variations on validation and test-dev split.

Utilizing the semantic meaning of labels can facilitate the per-
formance of VQA: By comparing MAC with DAG in Table III, it
can be seen that our DAG brings 3% (absolute) improvement in
accuracy, indicating that it is effective to represent the semantic
meaning of labels and allow the model to utilize the semantic
meanings while inferring. Moreover, comparing the results of
MAC with DAG w/o Params-Sharing and DAG in Table IV,
we find that the structured label space and dynamic concept
recognizer both are effective, and the structured label space
contributes more to overall accuracy.

The quality of the visual concept recognizer impacts VQA
performance: Comparing different visual concept recognition
modules, DAG, DAG w. S-L and DAG w. M-L, DAG achieves
higher accuracies on both datasets. The results show that using
different visual concept recognizers with the same grounding
method and group prediction method dramatically impacts the
VQA performance. Besides, for the DAG model evaluated on
test-dev set, we show the performances of three modules in
the DAG model: image grounding network, group prediction
network, and dynamic concept recognizer. The outputs of three
modules all have ground truth annotation: the object related
to questions, the group related to questions, and the answers.
Therefore, we use the accuracy to evaluate the performance of
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TABLE III
ACCURACY (%) OF OUR SINGLE MODEL ON THE GQA TEST SET

TABLE IV
PERFORMANCES (%) OF DIFFERENT VARIATIONS OF DAG MODEL ON VAL AND

TEST-DEV SET OF THE GQA DATASET

TABLE V
PERFORMANCES OF THREE MODULES IN DAG MODEL ON TEST-DEV SET ON

THE GQA DATASET

each module, and the results are shown in Table V. The results
demonstrate that the main challenge of the VQA model is the
recognition of visual concepts, and how to design a better visual
concept recognition module in the VQA procedure is worth
study.

The effect of parameters sharing in Dynamic Concept Rec-
ognizer: Comparing the results of DAG and DAG w/o Params-
Sharing, it can be seen that parameter sharing can improve the
performance of the VQA model. To better know the effectiveness
of parameters sharing on concept recognizer, we visualize the
distribution of attention values on candidate features of each
recognition sub-task in Fig. 7 (the points of some relevant
sub-tasks are marked in the same color). First, we observe
that the attention values are distributed uniformly in the space,
because no constraint guides them to cluster. Then, it can be seen
that many related groups are closed in attention value space,
e.g. “cleanliness (clean, dirty), brightness (bright, dark), road
(highway, pavement, etc.)” may all need to attention on the
features capturing the brightness of the image (e.g., a highway
is usually in a bright color, while a pavement is usually in a
dark color), “age, face expression” may both requires attending
on a face, “material (noun) and material (adjective)” are two
similar groups of concepts in different forms, and their attention
values are also closed. These observations demonstrate that DAG
indeed improves performance by learning the similarity between
different groups.

Fig. 7. The t-SNE [22] visualization of attention vectors on candidate features
for recognizing each group of concepts.

The influence of clustering results: Considering the compli-
cated structure of concept semantic space, it is actually an open
problem to find an exact or optimal clustering result. In this
part, we evaluate four different clustering results with different
group numbers to test the impact of different clustering results to
VQA final accuracy. Concretely, we keep the clustering results
of attributes and relationships related concepts be same among
four clustering results, because these concepts classify things in
a specific and clearly defined rule, e.g. “color,” “material”. Then,
we merge or split object concepts to obtain other clustering
results that group the concepts in different granularities. In
addition, we propose another clustering result to support one
concept relating to multiple groups.

• 153 Clusters: 153 groups of concepts obtained by using our
clustering method.

• 100 Clusters-Random: 100 groups of concepts, where the
object concepts are randomly clustered.

• 100 Clusters: 100 groups of concepts which is obtained by
merging some groups of object concepts in 153.

• 200 Clusters: 200 groups of concepts which is obtained by
splitting some groups of object concepts in 153.

• 153 Clusters-Multi-Groups: This clustering result allows a
polysemous concept to relate to multiple groups. We split
the polysemous concepts (4 concepts founded in the GQA
dataset, orange, light, short, old) to specific meanings used
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TABLE VI
PERFORMANCES (%) OF DIFFERENT VARIATIONS OF DAG MODEL WITH

DIFFERENT CLUSTERING SCHEMES ON VAL AND TEST-DEV SET ON THE GQA
DATASET

in datasets, then cluster the meanings of the concepts by
using the WordNet and finally obtain the meaning-level
groups. Then, we train the model with meaning-level an-
swers obtained by utilizing the question-type and answer
annotations. For example, for a polysemous answer “or-
ange”, if the question-type is query-object, then the “or-
ange” represents an object; if the question-type is query-
color, then the “orange” represents a type of color.

The validation and test-dev accuracies of DAG models with
different clustering results are shown in Table VI. It can be
seen that the VQA accuracy is relatively stable for different
clustering results as long as the clustering results are meaningful.
Besides, we find that the best accuracy is at 153 groups. It is
because the growth of group numbers will increase the difficulty
of group prediction, but eases the difficulty of visual concept
recognition. The number of groups 153 is a balanced point for
the current DAG model, which achieves relatively promising
accuracies on both two sub-tasks. Besides, from the result of
153 Clusters-Multi-Groups, it shows that our method supports
the case that some concepts are related to multiple groups.
Moreover, using the 153 Clusters-Multi-Groups does not lead to
obvious performance improvement compared to 153 Clusters.
It might because, in the current dataset, limited samples belong
to that case (91/ 12,578 ≈ 0.723% answers in test-dev split are
in the above-mentioned 4 polysemous answers).

C. Experiments on VQA v2 and VQA-CP v2

1) Experiment Settings: Datasets: The VQA v2 [10] is a
free-form open-ended visual question answering dataset that
contains 200,000 MSCOCO images, 1,105,904 question-answer
pairs. The VQA-CP v2 [1] (Visual Question Answering v2 under
Changing Priors) is a new split of VQA v2 to test whether the
model overuses the correlation between the questions and the
answers. VQA-CP v2 re-organizes the train and val splits of
VQA v2 to make the distribution of answer per question type
to be different between two splits. In the VQA v2 and VQA-CP
v2, the questions are separated into three categories: yes/no,
number, other. Also, the results are evaluated by using the VQA
evaluation metric [5].

Implementation: For visual concept clustering, we filter the
2,000 most frequent answers on VQA v2 dataset which are
assigned to 175 groups in clustering results obtained in Sec-
tion IV-A. We use Glove [25] as initialization of the word

embedding layer, and the embedded words are fed into a GRU
with 512d hidden states. We extract a fixed number of k =
36 Bottom-Up [2] features per image. In Dynamic Concept
Recognizer, the hyper-parameters of the module are as same
as in Experiments IV-A. Our model is trained by using the
rmsprop optimizer. We set the learning rate as 1e-4 when sepa-
rately training Group Prediction Network and Dynamic Concept
Recognizer, and set the learning rate as 5e-5 when fine-tuning
the whole module with relative weight λ = 0.1.

Baselines: To demonstrate the effectiveness of our proposed
DAG model, we propose some variations of our method. First,
we apply our method on two commonly used pre-training fea-
tures ResNet Feature [12], Bottom-Up Feature [2]. Then, we
test several baseline models:

• SAN [38]: SAN uses the ResNet feature to encode the image
and performs two-hop question-based image attention to
ground the image. Then, SAN uses an MLP to predict the
answer on a flat label space.

• GVQA [1]: Similar to DAG, GVQA also clusters the answer
into multiple groups, but it uses the clustering differently
and still uses an FC layer to predict the answer on a flat label
space. Concretely, GVQA first uses the attention mecha-
nism to ground the image. Then, GVQA generates all the
concepts in the grounded region. Finally, one concept will
be selected based on the group index feature generated from
question parser. GVQA formulates the group information as
a feature to represent additional features, which is different
from us which use clustering results to build label space.

• Bottom-Up [2]: Bottom-Up proposes an object-level image
features. Then, Bottom-Up uses the question to calculate
the soft attention value to attend an image region. Finally,
Bottom-Up uses an MLP to predict the answer on a flat
label space.

• DAG w. Q: This baseline aims to test the impact of the
question information in visual concept recognition. Instead
of only feeding visual feature to the Dynamic Concept
Recognizer, we combine the image feature and question
feature by using element-wise dot product and feed com-
bined feature to it.

2) Results and Analysis: Table VII shows the results of state-
of-the-art methods and variations of our method. The results of
state-of-the-art methods are cited from [1], [27]. We analyse the
observations obtained from the results:

Dynamic Answer Generator effectively avoid overusing lan-
guage priors: From the results of Bottom-Up vs. DAG (Bottom-
Up feature) and SAN vs. DAG (ResNet feature) on VQA-CP
v2, it demonstrates that DAG effectively prevents overusing the
language priors for two image features. We also qualitatively
evaluate our method on robustness. In the first two samples in
Fig. 8(a), both question answering pairs are rare in the dataset;
and the Bottom-Up model failed on these questions while our
model correctly predicts the answers. The reason is that our
visual concept recognizer learns a robust mapping between the
image and the visual concepts. The question information used
for grounding won’t disturb the recognizing of a group of visual
concepts.
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TABLE VII
PERFORMANCE (%) ON VQA-CP V2 TEST SET AND VQA V2 VALIDATION SET

Fig. 8. Qualitative results of our method. (a): The samples correctly answered by DAG model. The two samples on the left show that the DAG doesn’t overuse
the language priors and can recognize the relative rare situation. In addition, our model can better focus on learn the concepts which contains less samples and
such as the “wave”, “Christmas”. (b) & (c): The samples mistakenly predicted by DAG model. DAG can provide intuitive information when the model predicts
the wrong answer which is helpful for improving the model. Samples in (b) show that DAG predicts the wrong answer because of misunderstanding the question.
Samples in (c) show that DAG is not capable of correctly recognizing the related concepts in the image. (In the figure above, the word in the brackets is one sample
of the concepts in the given group.)

Besides, though our model neglects the language priors in
VQA v2 which can improve the performance, the performance of
our model doesn’t drop much, compared to the baseline Bottom-
Up and SAN. Moreover, since our method mainly focuses on the
question related to recognizing visual concepts, our results on
yes/no questions are similar to baselines.

Analysis of the components of DAG: We evaluate the per-
formance of each component to comprehensively measure the
performance of DAG. We check the accuracy of GPN to evaluate
the ability of question parsing. In DAG (Bottom-Up feature) on
VQA-CP v2, the accuracy of classifying all groups is 78.34%,
where the accuracy of classifying three types of question is
99.23%, the accuracy of classifying the group index in other-type

and number-type questions is 66.62%. It shows that under-
standing the human questions is more difficult, compared to
template generated questions in GQA, where DAG achieves
93% accuracy. The qualitative results are shown in Fig. 8. In
addition, to diagnose the difficulty of understanding human
questions, we visualize part of the confusion matrix of the
group prediction result, as shown in Fig. 9. We find that some
groups (outdoor scene, left/right, outside/inside, etc.) often are
mistakenly predicted. The concepts of these groups can all be
used to answer the “where” question. The confusion matrix
shows that our model overuses the left/right to answer the
“where” questions rather than using other groups of concepts
(the last column has a relatively large number). It shows that
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Fig. 9. Part of the confusion matrix on group prediction. The bigger the
element on the diagonal, the better.

TABLE VIII
THE ACCURACY (%) OF DCR WITH GROUND TRUTH GROUP INDEX ON

RECOGNIZING SELECTED GROUPS OF CONCEPTS ON VISUAL GENOME AND

VQA-CP V2

the DAG is struggling to speculate the intent of the ambiguous
questions.

We also evaluate the performance of recognizing each group
of concepts. To measure the performance of DCR without con-
sidering the group prediction, we feed the ground truth group
index to the DCR to predict the answer. Table VIII shows the
accuracy of recognizing some group of concepts (We also list
the recognizing accuracy on Visual Genome (Experiment on
Section IV-A) on Table VIII as references). We can find that
some groups of concepts are difficult to classify, such as “plane
figure”, “body part”. Besides, we observe that the accuracy of
classifying “vehicle part” is relatively high on Visual Genome,
but is relatively low on VQA-CP v2. This indirectly indicates
that these concepts may be difficult to ground, because the main
difference between two experiments is that one uses the ground
truth region, and one uses the predicted region.

Question information and Overusing Language Priors: Com-
paring the results of DAG with DAG w. Q in Table VII, when
we add question information on visual concept recognition
procedure and keep anything else be same, DAG w. Q obtains
lower accuracy on VQA-CP v2 and higher accuracy on VQA v2.
This phenomenon demonstrates that if the question information
takes part in visual recognition, the model will uncontrollably
utilize the language priors, rather than truly understanding the
image content. And the DCR module is an effective alternative
to output the answer in the VQA model.

Different usages of concepts clustering results: Comparing
the results of DAG with GVQA in Table VII, two models
achieve similar performances on overall accuracy, but our model
achieves much higher accuracy on other-type questions which
most relates to visual concept recognition. The main reason of

the performance gap is from the different usages of concept
clustering results. GVQA formulates the group index as a fea-
ture, so that they can only use basic FC layer with flat label
space to learn the visual concept. In contrast, since DAG uses
concept clustering results to build a structural label space which
allow us to design the Dynamic Concept Recognizer and brings
two advantages: 1) expand the capacity of visual recognizer
by decomposing itself to many sub-recognizers, and 2) easy to
utilize the semantics of the label to concentrate on distinguish-
ing relevant concepts. Note that, DAG doesn’t improve much
on yes/no-type questions compared to GVQA, because DAG
mainly focuses on improving visual concept recognition. The
yes/no sub-recognizer in DAG can be easily replaced by another
sophisticated module to improve accuracy.

V. CONCLUSION

In this paper, we propose a Dynamic Answer Generator
(DAG) that can utilize the semantic meaning of labels in an-
swer prediction. Specifically, instead of using a simple MLP
to recognize the image content and output the label in a flat
label space as the answer, DAG proposes a novel dynamic
concept recognizer which contains many sub-recognizers for
different visual sub-tasks to output the answer in a structural
label space which represents the relations between labels. Exper-
imentally, we show that our usage of the semantics of the labels
improves the performance of visual recognition, facilitates the
performance of the question answering, and reduces the risks on
overusing language priors.
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