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a b s t r a c t 

Video-based spontaneous expression recognition is a challenging task due to the large inter-personal varia- 

tions of both the expressing manners and the executing rates for the same expression category. One of the 

key is to explore robust representation method which can effectively capture the facial variations as well as 

alleviate the influence of personalities. In this paper, we propose to learn a kind of typical patterns that can 

be commonly shared by different subjects when performing expressions, namely “prototypes”. Specifically, 

we first apply a statistical model (i.e. linear subspace) on facial regions to generate the specific expression 

patterns for each video. Then a clustering algorithm is employed on all these expression patterns and the 

cluster means are regarded as the “prototypes”. Accordingly, we further design “simile” features to measure 

the similarities of personal specific patterns to our learned “prototypes”. Both techniques are conducted on 

Grassmann manifold, which can enrich the feature encoding manners and better reveal the data structure 

by introducing intrinsic geodesics. Extensive experiments are conducted on both posed and spontaneous ex- 

pression databases. All results show that our method outperforms the state-of-the-art and also possesses 

good transferable ability under cross-database scenario. 

© 2015 Elsevier Inc. All rights reserved. 
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. Introduction 

In recent years, facial expression recognition has become a pop-

lar research field due to its wide applications in many areas such

s biometrics, psychological analysis, human-computer interaction,

nd so on. In the early stage, many works have been done to classify

uman posed expressions in static images [1] . However, as facial ex-

ression can be viewed as a sequentially dynamic process, it is natu-

al and proved to be more effective to be recognized from video clips

2–5] . For spontaneous expression recognition in video, one of the

ain challenges is the large inter-personal variations of expressing

anners and executing rates for the same expression category. The

ey issue to cope with the challenge is to develop a more robust rep-

esentation for facial expression, which can better capture the subtle

acial variations as well as alleviate the influence of personalities in

erforming expression. 

According to the theory from physiology and psychology, facial

xpressions are the outcome of facial muscle motions over various

ime intervals. When captured by cameras, an observed expression

an be decomposed into a set of local appearance variations produced

y the motions occurring in different facial regions. In spite of the

arge inter-personal variations, there still exist some typical motion
∗ Corresponding author. fax: +86 10 6260 0548. 
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atterns, that can be commonly shared by different subjects in per-

orming expressions. The similar idea is also reflected in a pioneer-

ng work Facial Action Coding System (FACS) [6] , where a number of

ction Units (AU) are manually defined to describe some emotion-

elated facial actions aroused by muscle motions. Then each expres-

ion is represented by the existence of these AUs in a binary coding

anner. 

In light of such theory, we propose to explore a batch of commonly

hared typical patterns, i.e. “prototypes”, using data-driven approach,

nd then design a prototype-based encoding manner to generate the

eature representation for each sample. An schema of our basic idea

s illustrated in Fig. 1 . Specifically, we first apply a statistical model

i.e. linear subspace) on facial regions to model the local variations

f local patterns, which can generate the specific expression patterns

or each video sample. Then a clustering algorithm is employed on all

hese expression patterns, and each cluster mean can be regarded as

 “prototype”, which integrates the common properties of the sam-

les assigned to this cluster. Note that, all of the original patterns and

he learned “prototypes” are represented as linear (orthogonal) sub-

paces lying on Grassmann manifold, thus intrinsic geodesic distance

7] and Karcher means [8] are employed in this procedure for accu-

ate estimation. To obtain the unified prototype-based representa-

ion, we further design “simile” features to measure the similarities of

ersonal specific patterns to our learned “prototypes” on Grassmann

anifold. The idea is derived from [9] for face verification, which

http://dx.doi.org/10.1016/j.cviu.2015.08.006
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cviu
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cviu.2015.08.006&domain=pdf
mailto:sgshan@ict.ac.cn
http://dx.doi.org/10.1016/j.cviu.2015.08.006
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Fig. 1. An schema of our basic idea (best viewed in color). 
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assumed that an unseen face can be described as having a mouth

that looks like A ’s and a nose that looks like B ’s, where A and B are

individuals in the reference set. In our method, the static facial at-

tributes are replaced by some dynamic variation manners of facial

regions when performing expressions. However, different from [9]

which introduced an auxiliary reference set, we measure the simi-

larities referring to the “prototypes” directly explored from the data,

thus brings favorable robustness against the bias in the construction

of reference set. 

The main contributions of this paper are summarized as fol-

lows: (1) We propose a novel approach for modeling expression pat-

terns and learning “prototypes” using statistical model on Grassmann

manifold; (2) “Similes” are designed to explore the relations among

common prototypes and specific patterns, which provides a new

viewpoint to analyze the generality and specificity in the manner

of human performing spontaneous expressions. (3) Comprehensive

experiments are conducted with different parameter settings. The

transferable ability of prototypes and similes are further discussed in

cross-database test. 

The rest of this paper is structured as follows. Section 2 reviews

several most related work for video-based facial expression recogni-

tion. Section 3 introduces the essential components of our proposed

method, including facial expression patterns, prototypes learning,

and simile representation. In Section 4 , we provide comprehensive

evaluations on the whole framework as well as discussing the impor-

tant parameters. Finally, we conclude the work and discuss possible

future effort s in Section 5 . 

2. Related works 

For video-based facial expression recognition, there is always

strong interest in modeling the temporal dynamics among video

frames. The mainstream approaches of dynamic representation are

based on local spatial-temporal descriptors. For example, Yang et al.

[3] designed Dynamic Binary Patterns (DBP) mapping based on Haar-

like features. Zhao et al. [2] proposed LBP-TOP to extract the spatial-

temporal information from three orthogonal planes (i.e. X–Y, X–T, Y–

T) in image volumes. Hayat et al. [10] conducted a comprehensive

evaluation based on various descriptors, e.g. HOG3D [11] , HOG/HOF

[12] , 3D SIFT [13] , using bag of features framework for facial expres-

sion recognition. All these hand-crafted methods possess favorable

computational efficiency and generalization ability due to the inde-

pendency of data. 
Another line of methods attempt to explore the specific charac-

eristics in expression evolution using dynamic graphic models. For

nstance, Shang et al. [14] employed a non-parametric discriminant

idden Markov Model (HMM) on tracked facial features to for dy-

amic expressions modeling. Jain et al. [15] proposed to model the

emporal variations within facial shapes using Latent-Dynamic Con-

itional Random Fields (LDCRFs), which can obtain the entire video

rediction and continuously frame labels simultaneously. Wang et al.

4] proposed Interval Temporal Bayesian Networks (ITBN) to rep-

esent the spatial dependencies among primary facial actions as

ell as the variety of time-constrained relations, which characterize

he complex activities both spatially and temporally. Although these

chemes can better reveal the intrinsic principles of facial expres-

ions, the optimization requires lots of domain knowledge and large

omputational cost. 

More recently, statistical models were employed to encode the ap-

earance variations occurring in dynamic facial expressions, which

roved to be more effective when dealing with real-world data

16,17] . In [16] , linear subspace were applied on the feature set of

uccessive image frames to model the facial feature variations during

he temporal evolution of expression. For more robust modeling, [17]

ntegrated three different types of statistics into the framework, i.e.

inear subspace, covariance matrix, gaussian distribution, to model

he feature variations from different perspectives. As these statisti-

al models all reside on Riemannian manifold, intrinsic geodesics or

xtrinsic kernel methods were exploited to perform representation

nd classification on Riemannian manifold instead of traditional Eu-

lidean space. A common property of these two methods is to model

he facial variation globally, which could be easily affected by mis-

lignment or partial occlusion. Since localization has been proved

o be more natural and effective when processing face-related ap-

lication, in this paper, we focus on modeling local variation based

n statistical models and extracting generic local dynamic patterns

o unify the description of facial expressions performed by different

ubjects. We believe that this scheme can make balance between the

eneralization ability by considering repeatable local features and the

odality specificity by learning directly from data. 

. The proposed method 

In this section, we introduce the proposed method in three stages:

acial expression patterns generation, prototypes learning, and simile

epresentation. 
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Algorithm 1 Spectral clustering on Grassmann manifold. 

Input: 

Facial expression patterns extracted from all videos: { X i | i = 

1 , 2 , . . . , N} 
Output: 

K clusters: { C k | k = 1 , 2 , . . . , K} , where C k = { X k n | X k n ∈ C k } 
1: Compute the affinity (kernel) matrix A ∈ R N×N where A i j = 

|| X T 
i 

X j || 2 F . 

2: Define D as the diagonal matrix where D ii = 

∑ 

j A i j , and compute 

the normalized matrix L = D 

−1 / 2 AD 

−1 / 2 . 

3: Find the top l eigenvectors of L : u 1 , u 2 , . . . , u l . 

4: Form a matrix U containing u 1 , u 2 , . . . , u l as columns and renor- 

malize to unit norm by U i j = U i j /(
∑ 

j U 

2 
i j 
)1 / 2 . 

5: Take each of the N row of U as a point in R l and apply K-means to 

these N points, where the i th point corresponds to X i . 

6: Assign the original X i to C k if the i th row of U is assigned to cluster 

k . 
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.1. Facial expression pattern 

To consider locality, we focus on modeling facial patches rather

han the whole region. Specifically, suppose the patch size is s -by- s

ixels, which results in s 2 -dimensional gray feature vector, we collect

atches from the same location of all image frames in the video to

onstruct a feature set F = { f 1 , f 2 , . . . , f T } , where f t ∈ R s 
2 

denotes the

atch features of the t th frame, and T is the number of frames in the

ideo. The set can be statistically represented by a linear subspace

 ∈ R s 
2 ×r via SVD on its feature covariance matrix as: 

T 
 

t=1 

( f t − f )( f t − f )T = X �X 

T , (1)

here X = [ x 1 , x 2 , . . . , x r ] , x j is the j th leading eigenvector, and r is the

imension of the linear subspace. For all the feature sets of patches

ver different facial regions from different videos, we can obtain a

ollection of X as { X i | i = 1 , 2 , . . . , N} . Since the linear subspace en-

odes the feature correlations among successive frames, which de-

cribes the temporal variations occurring on facial regions, it can

erve as a kind of expression features, the so-called facial expression

attern in this paper. Based on these basic patterns, we design the

ollowing algorithm to obtain more compact and descriptive repre-

entation for expression recognition. 

.2. Prototypes learning 

In this paper, “prototypes” are defined to be some kind of typical

atterns describing common facial variations which can be shared by

ifferent subjects when performing expressions. To discover proto-

ypes automatically from data, we utilize a clustering algorithm on

ll the facial expression patterns to obtain a bank of centroids, each

f which can be regarded as an “exemplar” of the patterns in its clus-

er. However, the linear subspaces { X i | i = 1 , 2 , . . . , N} are a collection

f points residing on Grassmann manifold [7] , traditional clustering

lgorithm in Euclidean space cannot be directly applied. Following

18] , we employ the spectral clustering based on the affinity matrix

alculated by Grassmann kernels. Specifically, the similarity between

wo linear subspaces X i and X j can be measured by projection kernel

7] as: 

 i j = || X 

T 
i X j || 2 F , (2)

here A is the affinity (Grassmann kernel) matrix for spectral clus-

ering on Grassmann manifold. As in [19] , the affinity matrix is first

ormalized by: 

 = D 

−1 / 2 AD 

−1 / 2 , where D ii = 

∑ 

j 

A i j . (3)

hen the top l eigenvectors of L are computed to construct a new ma-

rix U . By treating each row of U as a point in R l , we apply the general

-means in the new embedded space and obtain the cluster assign-

ent, which can also be easily made correspondence to the original

acial expression patterns X i on Grassmann manifold. The whole clus-

ering procedure is summarized in Algorithm 1 . 

According to the cluster assignment, we can calculate the centroid

f each cluster to generate the “prototype”. To obtain a more accurate

stimation of the cluster mean, we employ the Karcher mean [8,20]

hich considers the intrinsic metric on Grassmann manifold specifi-

ally for linear subspaces. Formally, given the set of facial expression

atterns in the k th cluster C k : { X k n | X k n ∈ C k } , the Karcher mean is de-

ned to be a point residing on the manifold which minimizes the sum

f squared geodesic distances [8] : 

̂ 

 = arg min 

X∈M 

∑ 

k n 

d 2 g (X k n , X ), (4)

here M denotes the Grassmann manifold, and d g : M × M → R + 

s the geodesic distance defined on the manifold. Specifically, d g can
e measured by exponential map exp X ( ·) and logarithm map log X ( ·),
o switch between the manifold and its tangent space at the point X .

hus ̂  X is the solution to 
∑ 

k n 
log X (X k n ) = 0 , which can be solved it-

ratively as in Algorithm 2 . After this step, we obtain K cluster means

lgorithm 2 Karcher mean in cluster. 

nput: 

Facial expression patterns in C k : { X k n | X k n ∈ C k } 
utput: 

Karcher mean of the k th cluster: ̂  X k 

1: Randomly select a sample from C k as the initial Karcher mean ̂

 X 
(0 )
k 

2: Set iteration index p = 0 

3: while p < max _ iter do 

4: For each X k n , compute the tangent vector: 

V k n = log ̂ X (p) (X k n )

5: Compute the mean vector V k = 

∑ 

n V k n / # n in tangent space 

6: if || V k || 2 < epsilon(a small v alue), 

7: break ; 

8: else 

9: Move V k back onto the manifold: 
̂ X 

(p+1 )
k 

= exp ̂ X 
(p)
k 

(V k )

10: end if 

11: p = p + 1 

12: end while 

̂ 

 1 , ̂
 X 2 , . . . , ̂

 X K to serve as the “prototypes”. An illustration of proto-

ypes learning is shown in Fig. 2 . 

.3. Simile representation 

In order to obtain a unified representation based on the pro-

otypes, “simile” features are designed to explore the relationships

mong the common prototypes and specific patterns, which explic-

tly considers the generality and specificity in the manner of human

erforming expressions. Specifically, the relationship between two

amples is presented by calculating their similarity on Grassmann

anifold. Given a sample video containing M specific facial expres-

ion patterns, for each pattern, we calculate the its similarities to all

he K prototypes via the projection kernel mentioned above, thus re-

ults in M ∗K similarities to construct a “simile” representation. Dif-

erent from the traditional features extracted using descriptors, each

imension of the simile possesses a kind of mid-level semantics due

o the characterizing of “relationship”. Such simile feature is believed
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Fig. 2. An illustration of the expression prototypes learning. For each video volume, we first generate a number of specific facial expression patterns via linear subspace modeling. 

Then a clustering algorithm is employed on all patterns extracted from different videos, to obtain a bank of “prototype” calculated by Karcher mean of each cluster. The prototypes 

encode the typical properties of the basic motion patterns, which can be commonly shared by different subjects when performing expressions. 

Fig. 3. The sample facial expression images extracted from FERA database. 
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to be more compact and descriptive, which is also proved in our ex-

periments. 

3.4. Discussions 

The most related work of our method are [16] and [17] , which can

be regarded as a special case of the proposed framework. Specifically,

the final features in [16] and [17] are kernel matrix calculated by tak-

ing the training samples as the “prototypes”; and for each sample, the

specific patterns degenerate to a single global pattern. It is obvious

that the local modeling manner can capture more detailed informa-

tion and expect to be less sensitive to misalignment and occlusion.

Moreover, with the property of repeatability among different sam-

ples, the local patterns are more robust to intra-class variation and

much easier to be generalized to other data sources. 

Another similar work is Bag of Words (BoW) , which also gener-

ate a bank of common prototypes (i.e. codebook) using clustering

algorithm. The difference is that BoW is always based on low-level

features (i.e. words) and the final feature only estimates the occur-

rence of each codeword, while our method provides more descrip-

tive mid-level “words” and more elaborate representation “simile”.

However, from a broader view, our method can be regarded as a fine-

assignment version of BoW conducting on Grassmann manifold. Thus

the possible future effort may be to extend methods in the family of

BoW, e.g. fisher vector, to Grassmann manifold or some other non-

Euclidean space. 

4. Experiments 

4.1. Data and protocols 

CK+ database [21] contains 593 videos of 123 different subjects,

which is an extended version of CK database. All of the image se-

quences vary in duration from 10 to 60 frames and start from the
eutral face to the peak expression. Among these videos, 327 se-

uences from 118 subjects are annotated with the seven basic emo-

ions (i.e. Anger (An), Contempt (Co), Disgust (Di), Fear (Fe), Happy

Ha), Sadness (Sa), and Surprise (Su)) according to FACS [6] . 

MMI database [22] includes 30 subjects of both sexes and ages

rom 19 to 62. In the database, 213 image sequences have been la-

eled with six basic expressions, in which 205 are with frontal face.

ifferent from CK+, the sequences in MMI cover the complete ex-

ression process from the onset apex, and to offset. In general, MMI

s considered to be more challenging for the subjects usually wear

ome accessories (e.g. glasses, mustaches), and there are also large

nter-personal variations when performing the same expression. 

FERA database is a fraction of the GEMEP corpus [23] that has

een put together to meet the criteria for a challenge on facial AUs

nd emotion recognition. As the labels on test set are unreleased,

e only use the training set for evaluation. The training set includes

even subjects, and 155 sequences have been labeled with five ex-

ression categories: Anger (An), Fear (Fe), Joy (Jo), Sadness (Sa), and

elief (Re). FERA is more challenging than CK+ and MMI because the

xpressions are spontaneous in natural environment. Fig. 3 shows

ome examples from FERA database. 

AFEW database is collected from movies showing close-to-real-

orld conditions [24] . Here we use a subset of AFEW which is pro-

ided for EmotiW2013 [25] . According to the protocol, the videos are

ivided into three sets: training, validation, and testing. The task is to

lassify a sample video into one of the seven expression categories:

nger (An), Disgust (Di), Fear (Fe), Happiness (Ha), Neutral (Ne), Sad-

ess (Sa), and Surprise (Su). As far as we know that AFEW is con-

idered to be the most challenging emotion database due to the ex-

remely large varitions in the wild. Fig. 4 shows some examples from

ERA database. 

We also provide the number of samples for each expression cat-

gory of the four databases in Table 1 . For evaluation, we adopt

he strictly person-independent protocols on all these databases.
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Fig. 4. The sample facial expression images extracted from AFEW database. 

Table 1 

The number of samples for each expression of the four database. 

An Co Di Fe Ha Ne Re Sa Su Total 

CK+ 45 18 59 25 69 – – 28 83 327 

MMI 31 – 32 28 42 – – 32 40 205 

FERA 32 – – 31 30 – 31 31 – 155 

AFEW 117 – 90 104 127 118 – 116 104 776 
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Table 2 

Mean accuracy with different parameters on four databases. 

(a) CK+ 

Image scale SVM PLS 

K = 64 K = 128 K = 256 K = 64 K = 128 K = 256 

32x32 83.5 84.4 89.4 81.2 87.1 90.2 

4 8x4 8 81.4 85.2 86.1 83.4 88.4 88.8 

64x64 82.9 85.2 84.2 87.9 89.0 90.9 

(b) MMI 

Image scale SVM PLS 

K = 64 K = 128 K = 256 K = 64 K = 128 K = 256 

32x32 55.6 52.8 59.4 54.7 54.3 59.4 

4 8x4 8 57.5 57.5 58.9 58.9 59.3 60.1 

64x64 56.5 58.9 56.5 58.6 61.5 60.0 

(c) FERA 

Image scale SVM PLS 

K = 64 K = 128 K = 256 K = 64 K = 128 K = 256 

32x32 58.6 58.1 66.5 54.1 59.4 62.0 

4 8x4 8 64.6 65.2 62.7 65.1 64.4 63.9 

64x64 66.0 67.9 64.2 64.7 65.4 64.1 

(d) AFEW 

Image scale SVM PLS 

K = 64 K = 128 K = 256 K = 64 K = 128 K = 256 

32x32 23.9 25.9 25.5 24.2 24.2 25.1 

4 8x4 8 24.6 25.7 25.6 25.8 25.3 26.1 

64x64 25.8 26.4 26.1 25.0 26.2 27.5 
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n detail, experiments are performed based on leave-one-subject-

ut cross validation on CK+ and 10-fold cross validation in MMI. As

hese labels on test set are unknown for both FERA and AFEW, we

onduct leave-one-subject-out cross validation on FERA’s training set

nd two-fold cross-validation on the training-validation set on AFEW.

.2. Evaluation of the parameters 

For preprocessing, we first detect the face in each video frames

nd normalize them based on the locations of two eyes. In the facial

xpression patterns generation step, the patch size is fixed as 16-by-

6 (i.e. s = 16 ) pixels with the sampling step of eight pixels, while

he global facial image scale is a tunable parameter varying in 32, 48,

4. To calculate the linear subspace, each patch are represented as a

56-dimension gray feature vector, and the dimension of subspace r

s fixed as 15 in all cases. Another important parameter in our frame-

ork is the number of prototypes, i.e. the number of clusters K in

lgorithm 1 . In our experiment, we discuss three different values of K

s 64, 128, 256, to answer the two following questions: (1) How many

rototypes are enough for representing the typical patterns generally

r is it the more the better? (2) Are there any differences between

ab-controlled data and spontaneous data regarding to the selection

f K ? 

We evaluation the effects of these parameters on all the four

atabases. And for the final recognition, we employ two kinds of clas-

ifiers: linear SVM and one-vs-rest PLS [16] . The experimental results

re listed in Table 2 , from where we can obtain several important ob-

ervations as follows: (1) The larger image scale, i.e. 6 4x6 4, consis-

ently performs better when employing PLS classifier. For SVM, the

ame trend can also be observed when setting K = 64 , 128 , however,

here are always exceptions when K = 256 on most of the databases.

enerally, the image with a larger scale can capture more subtle ap-

earance variations on faces, which benefits the prototypes learning

ven with a smaller K . (2) The larger K usually performs well on most

f the databases except for FERA with the image scale of 4 8x4 8 and

 4x6 4. We conjecture the reason may be that a larger number of pro-

otypes leads to a more elaborate description of the observable data,

hich is easy to cause overfitting due to the lack of training data (i.e.

nly about 130 videos in each fold) on FERA. (3) For the two kinds of
lassifiers, PLS usually performs better than SVM, perhaps the one-vs-

est manner can especially deal with several difficult and confusion

ategories, thus contributes more in calculating the mean accuracy

ver all classes. 

.3. Comparison with related work 

In this section, we compare our method with the most related

ork, i.e. the global modeling strategy proposed in [16] , which gener-

te a single linear subspace for each video sample. For further boost-

ng performance, we conduct a decision level fusion of the results ob-

ained by employing multiple image scales. As shown in Table 3 , our

ethod significantly outperforms the global model in all cases. 

In addition, we also conduct comparison between the global

odel and proposed prototypes regarding to the transferable abil-

ty in cross-database test. Specifically, for each target video, we first

xtract its specific facial expression patterns, then generate the sim-

le features according to the prototypes calculated from other source

ata. In global scheme, each prototype is degenerated to a linear

ubspace modeling of the whole video sample. For evaluation, we
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Fig. 5. Mean accuracy on FERA with different classifiers. (a) SVM (b) PLS. 

Fig. 6. Mean accuracy on AFEW with different classifiers. (a) SVM (b) PLS. 

Table 3 

Mean accuracy (mAcc) and overall accuracy (Acc) on four 

databases. 

(a) CK+ 

Method SVM PLS 

mAcc Acc mAcc Acc 

Global model 83.6 89.9 85.7 91.1 

Prototype & Simile 88.2 92.1 94.6 96.3 

(b) MMI 

Method SVM PLS 

mAcc Acc mAcc Acc 

Global model 56.6 59.5 56.4 60.0 

Prototype & Simile 64.5 67.3 63.7 66.3 

(c) FERA 

Method SVM PLS 

mAcc Acc mAcc Acc 

Global model 63.8 63.9 63.1 63.2 

Prototype & Simile 69.1 69.0 70.4 70.3 

(d) AFEW 

Method SVM PLS 

mAcc Acc mAcc Acc 

Global model 23.9 23.9 23.0 23.9 

Prototype & Simile 28.3 29.5 29.3 30.9 
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take two spontaneous databases, i.e. FERA and AFEW, as the target

data. The corresponding source data are CK+/AFEW for FERA, and

CK+/FERA for AFEW. By fixing the image scale as 6 4x6 4 and varying

K in 64, 128, 256, we can obtain all the results as listed in Tables 4
Table 4 

Mean accuracy on FERA with prototypes transferring fr

Sources SVM 

Global K = 64 K = 128 K = 256

CK+ 57.9 59.5 59.5 61.4 

AFEW 52.9 56.9 56.9 57.6 

FERA 63.9 66.0 67.9 64.2 
nd 5 . For easy of comparison, we also provide the results obtained

y using the same source and target in the last line of each table. 

According to Figs. 5 and 6 , we can observe that for global model,

he performance degrade significantly when employing different

ource and target data. While for our method, prototypes learned

rom other source data show favorable transferable ability on both

ERA and AFEW. Even on AFEW, the results based on CK+ outperform

hat obtained by using its own data for training. The reason may be

hat AFEW is in real-world conditions with undesirable noises com-

ng from both image quality and manual annotations, thus makes it

hallenging to explore the purified expression-related information,

owever which can be provided by the prototypes learned from CK+.

his may also inspire us that spontaneous expressions also share

ome general variation patterns with the posed expressions. Since

o far the spontaneous data are difficult to collect and annotate, we

an make full use of the prototype knowledge derived from the large

mount of well-organized lab-controlled data. 

.4. Comparison with state-of-the-art 

Finally we conduct comparison with state-of-the-art methods as

hown in Table 6 , where “PSG” is short for our method “Prototype

nd Simile on Grassmann manifold”. For all methods, we directly cite

he results reported in their publications, except for the “Liu13 ∗[16] ”

n AFEW, which is implemented by using gray features as other

atabases rather than the convolutional features in the original

ethod. Compared to the results on other databases,the recognition
om different sources. 

PLS 

 Global K = 64 K = 128 K = 256 

60.0 63.5 66.1 62.2 

55.4 58.3 58.2 59.5 

63.1 64.7 65.4 64.1 
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Table 5 

Mean accuracy on AFEW with prototypes transferring from different sources. 

Sources SVM PLS 

Global K = 64 K = 128 K = 256 Global K = 64 K = 128 K = 256 

CK+ 20.2 25.0 26.1 26.5 20.1 28.3 26.8 27.1 

FERA 22.9 26.1 25.9 27.4 21.3 26.1 25.4 25.7 

AFEW 23.9 25.8 26.4 26.1 23.0 25.0 26.2 27.5 

Table 6 

Comparison with state-of-the-art on four databases. 

(a) CK+ 

Chew11 [26] Lucey10 [21] Chew12 [27] PSG SVM PSG PLS 

mAcc 74.4 83.3 89.4 88.2 94.6 

Acc 82.3 88.3 – 92.1 96.3 

(b) MMI 

Wang13 [4] Wang13 [4] Liu14 [28] PSG SVM PSG PLS 

mAcc 51.5 59.7 62.2 64.5 63.7 

Acc – 60.5 63.4 67.3 66.3 

(c) FERA 

Ptucha [29] Chew12 [27] Liu14 [28] PSG SVM PSG PLS 

mAcc 56.6 65.6 56.3 69.1 70.4 

Acc – – 56.1 69.0 70.3 

(d) FERA 

Dhall13 [25] Liu13 ∗[16] PSG SVM PSG PLS 

mAcc 26.7 23.9 28.3 29.3 

Acc 27.3 23.9 29.5 30.9 
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erformance degrades significantly on AFEW due to its challenging

mage conditions, e.g. large variations of pose and illumination. 

. Conclusions 

In this paper, we present a novel framework for spontaneous facial

xpression recognition in videos. To handle the large inter-personal

ariations, we propose to learn a bank of typical patterns named

prototypes”, which can be commonly shared by different subject

hen performing expressions. Accordingly, we further design sim-

le features to model the relationships between the individually spe-

ific patterns and generally common prototypes. Our experiments on

oth posed and spontaneous data demonstrate the effectiveness of

he method. The evaluation of transferable ability also provides in-

piration on how to deal with spontaneous expression recognition in

eal-world by utilizing large available lab-controlled data. In the fu-

ure, we will continually focus on this issue as well as explore more

escriptive features for a robust representation. 
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