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Abstract— Facial expression is a temporally dynamic event
which can be decomposed into a set of muscle motions occur-
ring in different facial regions over various time intervals.
For dynamic expression recognition, two key issues, temporal
alignment and semantics-aware dynamic representation, must
be taken into account. In this paper, we attempt to solve both
problems via manifold modeling of videos based on a novel mid-
level representation, i.e., expressionlet. Specifically, our method
contains three key stages: 1) each expression video clip is
characterized as a spatial-temporal manifold (STM) formed by
dense low-level features; 2) a universal manifold model (UMM)
is learned over all low-level features and represented as a set of
local modes to statistically unify all the STMs; and 3) the local
modes on each STM can be instantiated by fitting to the UMM,
and the corresponding expressionlet is constructed by modeling
the variations in each local mode. With the above strategy,
expression videos are naturally aligned both spatially and tem-
porally. To enhance the discriminative power, the expressionlet-
based STM representation is further processed with discriminant
embedding. Our method is evaluated on four public expression
databases, CK+, MMI, Oulu-CASIA, and FERA. In all cases,
our method outperforms the known state of the art by a large
margin.

Index Terms— Facial expression recognition, universal mani-
fold model, Riemannian manifold, discriminant Learning, expres-
sionlets.

I. INTRODUCTION

AUTOMATIC facial expression recognition plays an
important role in various applications, such as Human-

Computer Interaction (HCI) and diagnosing mental disorders.
Early research mostly focused on expression analysis from
static facial images [1]. However, as facial expression can
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be better described as the sequential variation in a dynamic
process, recognizing facial expression from video is more
natural and has been proved to be more effective in recent
research works [2]–[6].

Among these video-based facial expression recognition
methods, one of the main concerns is how to effectively encode
the dynamic information in videos. Currently, the mainstream
approaches to dynamic representation are based on local
spatial-temporal features like LBP-TOP (local binary patterns
on three orthogonal planes) [2] and HOG 3D (histogram of
oriented gradients on spatio-temporal dimensions) [7]. These
local descriptors extracted in local cuboid are then pooled over
the whole video or some hand-crafted segments, to obtain a
representation with certain length independent of time resolu-
tion. As the low-level features possess the property of repeata-
bility, integrating them by pooling leads to robustness to
intra-class variations and deformations of different expression
styles. However, this kind of technique lacks of consideration
of two important issues: 1) Temporal alignment. Expres-
sions are inherently dynamic events consisting of onset, apex,
and offset phases. Intuitively, the recognition should conduct
matching among corresponding phases, which thus requires
globally temporal alignment among different sequences. The
rigid pooling has inevitably dropped those sequential relations
and temporal correspondences. 2) Semantics-aware dynamic
representation. Each expression can be decomposed into a
group of semantic action units, which exhibit in different facial
regions with varying sizes and last for different lengths of time.
Since the manually designed cuboids can only capture low-
level information short of representative and discriminative
ability, they are incapable of modeling the expression dynamic
in higher semantic level.

In this paper, we attempt to address both issues via spatial-
temporal manifold modeling based on a set of mid-level
representations, i.e. expressionlets. The proposed mid-level
expressionlet is a kind of modeling that aims to characterize
the variations among a group of low-level features as shown
in Figure 1. The notation “-let” means that it serves as a local
(both spatially and temporally) dynamic component within
a whole expression process, which shares similar spirit with
“motionlet” [8] in action recognition community. Thus expres-
sionlet bridges the gap between low-level features and high-
level semantics desirably. Specifically, as shown in Figure 2,
given an individual video clip, we first characterize it as a
Spatial-Temporal Manifold (STM) spanned by its low-level
features. To conduct spatial-temporal alignment among STMs,
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Fig. 1. A schematic illustration of constructing the mid-level representation –
the proposed “expressionlets” (“COV” is short for “covariance matrix”). Each
strip stands for a local feature, and the K feature modes (similar to codewords)
are pre-learned and modeled via GMM.

we build a Universal Manifold Model (UMM), and represent it
by a number of universal local ST modes, which can be learned
by EM-like methods among the entire collection of low-level
features. By fitting to UMM, the local modes on each STM
can be instantiated respectively and all of the different STMs
are inherently and mutually well-aligned to UMM via these
corresponding modes. Finally, our expressionlet is constructed
by modeling each local mode on STMs. To capture and
characterize the correlations and variations among low-level
features within each mode, the expressionlet comes in the form
of covariance matrix of the feature set in a statistical manner,
which also makes it robust to local misalignment [9]–[11].

To further enhance the discriminative ability of expres-
sionlet, we perform a discriminant learning with these mid-
level representations on all of the STMs. By considering the
“margin” among corresponding expressionlets, we exploit a
graph-embedding [12], [13] method by constructing partially
connected graphs to keep the links between expressionlets
with the same semantics. In the end, the embedded features
are correspondingly concatenated into a long vector as the
final manifold (video) representation for classification. Hence,
the proposed expressionlet has the following characteristics:
1) Flexible spatial-temporal range. i.e. varying sizes of
spatial regions and temporal durations. 2) Variation modeling.
It encodes the local variations caused by expression using a
covariance matrix. 3) Discriminative ability. It is descriptive
and contains category information for recognition.

Preliminary results of the method have been published
in [14]. Compared with the conference version, this paper
has made three major extensions. First, we generalize the
framework to be compatible for various low-level 2D/3D
descriptors to construct mid-level expressionlet. Second, we
provide a more detailed comparison and discussion regarding
different strategies for UMM learning, including the alignment
manners of local modes in UMM training stage and the low-
level feature assignment manners in UMM fitting stage. Third,
more extensive experiments are carried out to evaluate each
component in the method and compare with other state-of-the-
art algorithms.

The rest of the paper is organized as follows: Section II
briefly reviews the previous related work for dynamic facial

expression recognition. Section III introduces the Universal
Manifold Model, i.e. a statistical model for spatial-temporal
alignment among different expression manifolds (videos).
Section IV presents the mid-level expressionlet learning based
on UMM and conducts detailed discussions with other related
works. In Section V, we provide comprehensive evaluations
of the whole framework as well as each of the building
block. Experiments are conducted on four public expression
databases and extensively compared with the state-of-the-art
methods. Finally, we conclude the work and discuss possible
future efforts in Section VI.

II. RELATED WORKS

In the past several decades, facial expression recognition
based on static images had aroused lots of interests among
researchers. For facial feature representation, typical image
descriptors including Local Binary Pattern (LBP) [15], Local
Gabor Binary Pattern (LGBP) [16], Histogram of Oriented
Gradient (HOG) [17], and Scale Invariant Feature Trans-
form (SIFT) [18] have been successfully applied in this
domain. Lucey et al. [19] also applied Active Appearance
Model (AAM) to encode both shape (facial landmarks) and
appearance variations. A comprehensive survey of some of
these techniques can be found in [1] and [20].

However, as facial expressions are more naturally viewed
as dynamic events involving facial motions over a time
interval, recently, strong interest in modeling the tem-
poral dynamics of facial expressions in video clips has
evolved. The psychological experiments conducted in [21]
have provided evidence that facial dynamics modeling is
crucial for interpreting and discriminating facial expressions.
Generally, the temporal modeling manners can be catego-
rized into two groups: hard-coded and learning-based. In
this paper, we review some related works of dynamic facial
expression recognition based on the two schemes mentioned
above.

The hard-coded modeling scheme encodes the variations
among several successive frames using predefined computa-
tions. For example, optical flow is calculated between con-
secutive frames and has been applied in some early works
for expression recognition [22], [23]. Koelstra et al. [24]
used Motion History Images (MHI) to compress the motions
over several frames into a single image by layering the
pixel differences between consecutive frames. Another kind
of typical implementation is designing spatial-temporal local
descriptors to capture the dynamic information. For instance,
Yang et al. [3] designed dynamic binary patterns mapping for
temporally clustered Haar-like features and adopted boosting
classifiers for expression recognition. Zhao et al. [5] encoded
spatial-temporal information in image volumes using LBP-
TOP [2] and employed SVM and sparse representation clas-
sifier for recognition. Hayat et al. [25] evaluated various
dynamic descriptors including HOG/HOF [26], HOG3D [7],
and 3D SIFT [27] using bag of features framework for video-
based facial expression recognition. All these methods benefit
from the low computational cost of local descriptors and also
show favourable generalizations to different data sources and
recognition tasks.
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Fig. 2. The schema of the proposed method. Given an individual video clip, we intend to model it as a Spatial-Temporal Manifold (STM) spanned by local
spatial-temporal features. To statistically unify and thus facilitate the alignment of STMs, we propose a Universal Manifold Model (UMM), represented as a
number of universal local ST modes, which can be learned by EM-like methods. With UMM constructed, the local modes on each STM can be instantiated
by fitting to UMM and thus aligned mutually, then the corresponding expressionlet is built to model the variations (via covariance matrix) in each local ST
mode. Thus we obtain an expressionlet-based representation of STM. Please note that, for UMM training, we exploit both appearance and spatial-temporal
location information of the local features in order to enforce some degree of locality both spatially and temporally.

To consider the specific characteristics of dynamic facial
expressions, the learning-based modeling schemes attempt
to explore the intrinsic correlations among facial variations
using dynamic graphical models. Some representative works
are briefly introduced as follows: Cohen et al. [28] used
Tree-Augmented Naive Bayes (TAN) classifier to learn the
dependencies among the facial motion features extracted from
a continuous video. Shang and Chan [29] applied a non-
parametric discriminant Hidden Markov Model (HMM) on
the facial features tracked with Active Shape Model (ASM)
to recognize dynamic expressions. Jain et al. [30] pro-
posed a framework by modeling temporal variations within
facial shapes using Latent-Dynamic Conditional Random
Fields (LDCRFs), which obtains the entire video prediction
and continuously frame labels at the same time. To further
characterize the complex activities both spatially and tempo-
rally, Wang et al. [31] proposed Interval Temporal Bayesian
Networks (ITBN) to represent the spatial dependencies among
primary facial events and the large variety of time-constrained
relations simultaneously. To summarize, the learning-based
modeling can better reveal the intrinsic principles of the
dynamic variations caused by facial expressions. However the
construction and optimization of a such model requires lots of
domain knowledge and high computational cost.

III. UNIVERSAL MANIFOLD MODEL (UMM)

A facial expression video depicts continuous shape or
appearance variations and can be naturally modeled by a non-
linear manifold, on which each point corresponds to a certain
local spatial-temporal pattern. For dynamic expression recog-
nition, the main challenge is the large arbitrary inter-personal
variance of expressing manners and execution rate for the same
expression category, thus it is crucial to conduct both spatial

and temporal alignment among different expression manifolds.
In this section, we first introduce the manifold modeling of
videos and then propose a statistic-based Universal Manifold
Model (UMM) to achieve implicit alignment among different
expression videos.

A. Spatial-Temporal Manifold

For clarification, we first present the spatial-temporal mani-
fold (STM) for modeling each video clip. The STM is spanned
by 3D (i.e. spatial-temporal) blocks densely sampled from
the video volume, which cover a variety of local variations
in both spatial and temporal space. Two kinds of common
descriptors, i.e. SIFT and HOG, are employed for low-level
feature extraction on each sampled block with the size of
w ∗ h ∗ l, where w, h are the numbers of pixels on two spatial
directions, and l is the number of frames. The extracted feature
is denoted as axyt , where x, y, t are spatial-temporal index of
the block on the STM.

To consider the manifold structure information, for all the
blocks we augment the appearance features with their spatial-
temporal coordinates, i.e. f = {axyt , x/w∗, y/h∗, t/ l∗},
where axyt is the appearance feature of the block located at
{x, y, t}, and w∗, h∗, l∗ are the numbers of blocks on width,
height and time length direction on the STM. An illustration
of the local features is shown in Figure 3.

B. UMM Learning

1) Training Stage: Universal Manifold Model (UMM)
is defined to statistically model the STMs from different
people with different expressions. As a person-independent
and expression-independent model, UMM facilitates
the robust parameterized modeling of the STMs.
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Fig. 3. An illustration of the spatial-temporal blocks for low-level feature
extraction. The augmented features are then used to construct the STM.

Inspired by [32] and [33], we employ a Gaussian Mixture
Model (GMM) to learn the UMM by estimating the
appearance and location distribution of all the 3D block
features. Thus each Gaussian component can represent a
certain spatial-temporal mode modeling the variations among
a set of low-level features with similar appearance and relative
locations in videos.

Simply we can train a GMM with spherical Gaussian
components as follows:

P( f |�) =
K∑

k=1

wk G( f |μk, σ
2
k I ), (1)

where � = (w1, μ1, σ1, . . . , wK , μK , σK ); K is the number
of Gaussian mixture components; I is the identity matrix;
wk, μk, σk are the mixture weight, mean, and diagonal covari-
ance of the k-th Gaussian component G( f |μk, σk). We use the
typical Expectation Maximization (EM) algorithm to estimate
the parameters of GMM by maximizing the likelihood of the
training feature set. After training the UMM, each Gaussian
component builds correspondence of a group of block features
from different STMs, which constitute a local ST mode
universally.

2) Fitting Stage: The UMM learned above can be regarded
as a container with K-components GMM. Then, given any
STM, we aim to formulate it as a parameterized instance of
the UMM. For this purpose, our basic idea is to assign local
features on the STM into the K Gaussian “buckets” according
to their probabilities.

Formally, an expression manifold Mi can be presented as
a set of local block features, i.e. F i = { f i

1 , . . . , f i
Bi

}, where
Bi is the number of features on Mi . For the k-th Gaussian
component G( f |μk, σk) on the UMM, we can calculate the
probabilities of each f i

b in Fi as

Pi
k = {pk( f i

b ) | pk( f i
b ) = wk G( f i

b |μk, σ
2
k I )}Bi

b=1. (2)

We sort the block features f i
b in descending order of Pi

k , and
the top T features with the largest probabilities are selected
for the k-th local mode construction, which can be represented
as Fi

k = { f i
k1

, . . . , f i
kT

}. The selected features in each set
are expected to be close in space-time location and share
similar appearance characteristics, which can represent the
local variations occurred in a certain facial region during a
small period of time. Different from the hard assignment in tra-
ditional GMM, by using such a soft manner, one feature can be

Fig. 4. Examples of typical local modes referring to the original spatial-
temporal locations in videos. A local mode is consisted of a set of features
with largest T probabilities to a certain Gaussian component on UMM. Note
that different colors represent different local modes. Best viewed in color.

Algorithm 1 UMM Learning

assigned to multiple modes (components) for sharing, which
brings favorable robustness against mis-assignment. Moreover,
discarding some useless features with low probabilities to any
mode can also be regarded as a “filtering” operation, which
can alleviate the influence of unexpected noises irrelevant to
expressions. In Figure 4, we also demonstrate some examples
of the learned local modes referring to the original spatial-
temporal locations in videos.

Finally, an overall procedure is summarized in Algorithm 1.
Based on the input unaligned STMs F1, . . . ,FN , each of
which is represented by a set of low-level features, the
algorithm provides two kinds of outputs: a group of learned
optimal UMM parameters �∗, and the mutually aligned STMs
F̃1, . . . , F̃N , each of which is represented by K corresponding
local modes instantiated by fitting to UMM.

IV. EXPRESSIONLET LEARNING

A local mode on mutually aligned STM is essentially a
set of local features, which jointly express the appearance or
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dynamic characteristics of the data. To explore such infor-
mation, in the following section, we propose the mid-level
“expressionlet” to integrate the power of low-level features by
modeling their distribution in a statistical manner.

A. Expressionlet Modeling

Considering the correlations and variations among the fea-
tures in a local model, we calculate the covariance matrix of
the set Fi

k as the representation of an expressionlet:

Ci
k = 1

T − 1

T∑

t=1

( f i
kt

− f i
k )( f i

kt
− f i

k )T , (3)

where f i
k is the mean of the block features in set Fi

k . The
diagonal entries of Ci

k represent the variance of each individ-
ual feature, and the non-diagonal entries are their respective
correlations. As the expressionlets are globally aligned via
UMM, the covariance modeling can provide a desirable locally
tolerance to spatial-temporal misalignment.

In the end, the i -th manifold Mi can be represented as
a set of expressionlets, i.e. Ei = {Ci

1, Ci
2, . . . , Ci

K }. Here
the expressionlets are Symmetric Positive Definite (SPD)
matrices (i.e. nonsingular covariance matrices), lying on
a Riemannian manifold [34]. We exploit a Log-Euclidean
Distance (LED) [35] to project these points to Euclidean
vector space, where standard vector learning methods are
ripely studied, as advocated in [11].

Given a covariance matrix C , the mapping to vector space is
equivalent to embedding the SPD manifold M into its tangent
space T at identity matrix I , i.e.:

� : M �→ TI , C �→ (log(C)). (4)

Let C = U�U T be the eigen-decomposition of SPD
matrix C , its log can be computed by

log(C) = Ulog(�)U T . (5)

As we obtain a vector mapping of covariance matrix
spanned by log(C), general vector learning methods,
e.g. PCA, can be employed to reduce the high dimension of
expressionlet. Basically, in this work, we preserve 99% ener-
gies of PCA for each expressionlets, and conduct discriminant
learning for further reduction.

B. Discriminant Learning With Expressionlets

As the expressionlet possesses the property of spatial-
temporal locality, an effective way of enhancing its discrimi-
native power is to consider the “margin” among corresponding
expressionlets from different STM samples. Thus we can
formulate our learning scheme via the graph embedding [12]
framework.

As shown in Figure 5, In the overall expressionlet set
{E1, . . . , E N }, given the m-th expressionlet, which corre-
sponds to the p-th mode on Mi , denoted as Ci

p; and the n-th
expressionlet, which corresponds to the q-th mode on M j ,
denoted as C j

q (Note that, if all STMs are ordered, we can
denote m = (i −1)∗ K + p and similarly n = ( j −1)∗ K +q .
The indices m and n are used for better illustration), with the

Fig. 5. The adjacency relationships of the intrinsic and penalty graphs for
the discriminative learning with expressionlets (Different colors represent the
different Gaussian components in UMM). Mi and M j are two manifolds
with the same class label, while Mi∗ and M j∗ are with different class labels.
The intrisic/penalty graph only considers the “margin” among corresponding
expressionlets (Ci

k and C j
k ) generated from the same Gaussian component k.

class label li , l j for Mi , M j respectively, the intrinsic graph
Ww and penalty graph Wb can be defined as follows:

Ww(m, n) =
{

1, i f li = l j , and p = q

0, otherwi se
(6)

Wb(m, n) =
{

1, i f li �= l j , and p = q

0, otherwi se
(7)

We aim to learn an embedding function φ to maximize
the discriminative power while simultaneously preserve the
correspondence of expressionlets from the same Gaussian
component. According to Ww and Wb , the within-class scatter
Sw and between-class scatter Sb can be defined as:

Sw =
∑

m,n

Dis(φ(Ci
p), φ(C j

q ))Ww(m, n), (8)

Sb =
∑

m,n

Dis(φ(Ci
p), φ(C j

q ))Wb(m, n), (9)

where Dis(φ(Ci
p), φ(C j

q )) denotes the distance between two

embedded expressionlets φ(Ci
p) and φ(C j

q ).
According to Equation 5 we can obtain a vector representa-

tion xm of the m-th expressionlet, i.e. Ci
p , where xm is a vector

spanned by log(Ci
p). Simply consider a linear projection v,

we can reformulate the embedded features and the distance
between them in classical Euclidean space as

φ(Ci
p) = vT xm, φ(C j

q ) = vT xn, (10)

Dis(φ(Ci
p), φ(C j

q )) = ||vT xm − vT xn||2. (11)

Accordingly, we only need to learn the projection v instead
of φ, by maximizing the between-class scatter Sb while
minimizing the within-class scatter Sw:

vopt = arg max
vT X (Db − Wb)X T v

vT X (Dw − Ww)X T v
, (12)

where Dw and Db are diagonal matrices with diagonal
elements Dw(m, m) = ∑

n Ww(m, n) and Db(m, m) =∑
n Wb(m, n). Let Lw and Lb be the Laplacian matrices of

two graphs Ww and Wb . The columns of an optimal v are
the generalized eigenvectors corresponding to the l largest
eigenvalues in

X Lb X T v = λX Lw X T v. (13)
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With the learned embedding function φ, the K expres-
sionlets from Mi can be represented as {φ(Ci

1), . . . , φ(Ci
K )}.

These K features are concatenated to form a long vec-
tor as the final expression manifold (video) representation.
In the end, we use multi-class linear SVM implemented by
Liblinear [36] for classification.

C. Discussion

1) Expressionlet vs. AU: Action Units (AU) [37] are fun-
damental actions of individual or groups of facial muscles
for encoding facial expression based on Facial Action Coding
System (FACS). Similarly, our expressionlets are designed to
model expression variations over local spatio-temporal regions
in the same spirit as AUs. However, there are two differences
between expressionlets and AUs: (i) AUs are manually defined
concepts that are independent of person and category, while
expressionlets are some mid-level representations extracted
from data using learning scheme, which possess the dynamic
modeling ability and discriminative power. (ii) According to
FACS, each expression is encoded by the existence of a certain
number of AUs. Instead of the binary coding manner, in our
method, an expression can be represented by various real-
valued expressionlet patterns which provide more flexible and
rich information.

2) Expressionlet vs. BoVW/VLAD/FV: In our method, we
extract dense local spatial-temporal features and construct
a codebook (via GMM), in which each codeword can be
considered as a representative of several similar local features.
Both of the two operations (i.e. local feature extraction, and
codebook construction) are also typical steps in Bag of Visual
Words (BoVW) (or Vector of Locally Aggregated Descrip-
tors (VLAD), and Fisher Vectors (FV)) framework.

However, in pooling stage, BoVW/VLAD/FV all perform
summing/accumulating operation among the local features
assigned to each certain codeword. Specifically, BoVW [38]
simply estimates histogram(s) of occurrences of each code-
word; VLAD accumulates the first-order difference of the
vectors assigned to each codeword, which characterizes the
distribution with respect to the center (codeword) [39]; Com-
pared to VLAD, FV encodes both first-order and second-
order statistics of the difference between the codewords and
pooled local features and accumulates them based on the
Gaussian component weights of GMM learned for codebook
construction [40]. However, in our method, different from
the summing operation, we make use of the second-order
statistics by estimating the covariance of all the local features
(augmented with location information) falling into each bucket
(codeword). In this way, the local features are pooled to
keep more variations, which not only encodes the relationship
(difference) between the center and pooled features, but also
includes the internal correlations among those pooled features
which collaboratively describe some kind of motion patterns
(i.e. expressionlets). In addition, in our method, by limiting
the number (T in Algorithm 1) of local features falling into
each bucket, not all local features are necessarily taken into
account by the second-order pooling, which is also different
from traditional methods. We believe such a strategy can

Fig. 6. The sample facial expression images extracted from the apex frames
of video from Oulu-CASIA database.

alleviate the influence of unexpected noise or signal distortions
(e.g. caused by occlusion).

V. EXPERIMENTS

A. Datasets and Protocols

1) CK+ Database: The CK+ database [41] consists of 593
sequences from 123 subjects, which is an extended version
of Cohn-Kanade (CK) database. The image sequence vary
in duration from 10 to 60 frames and incorporate the onset
(neutral face) to peak formation of the facial expression. The
validated expression labels are only assigned to 327 sequences
which are found to meet the criteria for 1 of 7 discrete emo-
tions (Anger, Contempt, Disgust, Fear, Happiness, Sadness,
and Surprise) based on Facial Action Coding System (FACS).
We adopt leave-one-subject-out cross-validation (118 folds)
following the general setup in [41].

2) Oulu-CASIA Database: The Oulu-CASIA VIS data-
base [5] is a subset of the Oulu-CASIA NIR-VIS database,
in which all the videos were taken under the visible (VIS)
light condition. We evaluated our method only on the nor-
mal illumination condition (i.e. strong and good lighting).
It includes 80 subjects between 23 and 58 years old, with
six basic expressions (i.e. anger, disgust, fear, happiness,
sadness, and surprise) of each person. Each video starts at
a neutral face and ends at the apex of expression as the same
settings in CK+. Similar to [5] and [42], we adopted person-
independent 10-fold cross-validation scheme on the total 480
sequences. Figure 6 shows some sample facial expression
images extracted from the apex frames of video from Oulu-
CASIA database.

3) MMI Database: The MMI database [43] includes 30
subjects of both sexes and ages from 19 to 62. In the database,
213 sequences have been labeled with six basic expressions,
in which 205 sequences were captured in frontal view. Each
of the sequence reflects the whole temporal activation patterns
(onset → apex → offset) of a single facial expression type.
In our experiments, all of these data were used and also a
person-independent 10-fold cross-validation was conducted as
in several previous work [14], [42]. Compared with CK+ and
Oulu-CASIA, MMI is thought to be more challenging for
the subjects pose expressions non-uniformly and usually wear
some accessories (e.g. glasses, moustache).

4) FERA Database: The FERA database [44] is a fraction
of the GEMEP corpus [45] that has been put together to
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Fig. 7. The sample facial expression images extracted from the key frames
of video from FERA database.

meet the criteria for a challenge on facial AUs and emo-
tion recognition. For the emotion sub-challenge, a total of
289 portrayals were selected: 155 for training and 134 for
testing. The training set included 7 (3 men) actors with 3 to 5
instances of each emotion per actor, and the test set includes
6 actors, each of whom contributed 3 to 10 instances per
emotion. As the labels on the test set remain unreleased, we
only use the training set and adopt leave-one-subject-out cross-
validation for evaluation. The 155 sequences in the training set
have been labeled with 5 expression categories: Anger (An),
Fear (Fe), Joy (Jo), Sadness (Sa), and Relief (Re). FERA
is more challenging than CK+, Oulu and MMI because the
expressions are spontaneous in natural environment. Figure 7
shows some sample facial expression images extracted from
the apex frames of video from FERA database.

B. Parameter Settings

For preprocessing, all the face images are normalized to
96x96 pixels based on the locations of two eyes. In the STM
construction step, the low-level 3D blocks are w ∗ h ∗ l pixels
and sampled with a stride of 0.5 ∗ w in spatial dimension
and one frame in temporal dimension. Here w, h are tunable
parameters varying over 16,24,32 (the evaluations are provided
in the next subsection). Two kinds of descriptors, SIFT and
HOG, are employed for low-level feature extraction. For SIFT,
we apply the descriptor to the center point of each block and
obtain a typical 4∗4∗8 = 128 dimensions feature vector. PCA
is further applied to reduce the dimension to 64. For HOG,
each w ∗ h ∗ l block is divided into 2 ∗ 2 ∗ 2 grids and in each
grid, the gradient orientations are quantized to 8 histogram
bins, thus results in 2 ∗ 2 ∗ 2 ∗ 8 = 64 dimensions for each
block. For the choice of l, we set l = 1 for SIFT and l = 4
for HOG to target both performance and efficiency.

In the following, we conduct detailed discussions on each
framework component: (i) The effect of spatial scale for
low-level feature extraction, which involves the parameter of
patch size w, h; (ii) The effect of alignment via UMM. We
compare the rigid blocking and elastic alignment manners for
K local modes construction, which involves the parameter
of number of modes (i.e. Gaussian components in UMM);
(iii) The effect of low-level feature assignment manner in
UMM fitting. Both hard-assignment and soft-assignment man-
ners are compared and discussed regarding to the parameter of
number of low-level features T to construct an expressionlet;
(iv) The effect of discriminant learning with expressionlets.

Fig. 8. Average recognition accuracy (%) with different patch sizes for low-
level feature extraction on four datasets. (a) CK+ (b) Oulu-CASIA (c) MMI
(d) FERA. (using Dense SIFT feature).

The high-dimensions of expressionlets can be reduced simply
by unsupervised PCA in vector space, or a marginal discrimi-
nant learning introduced in Section IV-B. The performance of
these two schemes are compared and discussed regarding to
the parameter of reduced dimension dim for an expressionlet.

C. Evaluations of Framework Components

1) The Effect of Spatial Scale for Low-Level Feature Extrac-
tion: We first evaluate the effect of spatial scale, i.e. patch size
w, h, for low-level feature extraction. The w, h are varying in
16, 24, 32. Here we only take SIFT feature for example. Other
parameters T = 64 and dim = 256 are fixed in the exper-
iments on all datasets. Figure 8 illustrates the performance
of different patch sizes with different numbers of Gaussian
components K . As shown, on CK+, Oulu-CASIA, MMI, the
green curves with 24 ∗ 24 perform the best. While on FERA,
the results become better when adopting larger patch size. The
reason may be that muscle motions induced by spontaneous
expression is likely to involve larger facial regions compared to
posed expression. In the following evaluations, we uniformly
apply w = h = 24 on all datasets.

2) The Effect of Alignment via UMM: We compare the
rigid blocking and elastic alignment (UMM) manners for the
construction of a bank of local modes. In our experiments, the
number of local modes K is varying in 16,32,64,128,256. For
rigid blocking manner, the number of local modes in spatial
dimension is fixed to 4 ∗ 4 = 16 and the blocking scheme
is illustrated in Figure 9. Then the number of partitions in
temporal dimension is K/16 (i.e. 1,2,4,8,16).

The performance comparison is shown in Figure 10.
On CK+ and Oulu-CASIA, the elastic manner does not always
perform better than rigid manner, especially with smaller
value of K on Oulu-CASIA. It is possibly due to that the
expression sequences of CK+ and Oulu-CASIA demonstrate
a monotonous variation from neutral to apex status, thus the



LIU et al.: LEARNING EXPRESSIONLETS VIA UMM FOR DYNAMIC FACIAL EXPRESSION RECOGNITION 5927

Fig. 9. An illustration of rigid blocking scheme in spatial dimension. The
whole image is 96∗96 pixels and each local mode is 36∗36 pixels in spatial.
For w = h = 24, the whole image contains 7 ∗ 7 = 49 key points “◦” for
SIFT descriptor and each local mode covers 4 as shown in the right.

Fig. 10. Average recognition accuracy (%) with different alignment manners
(rigid/elastic) on four datasets. (a) CK+ (b) Oulu-CASIA (c) MMI (d) FERA.
(using Dense SIFT feature).

temporal alignment is not the major challenge for recognition.
For MMI, each of the sequence reflects the whole temporal
activation from onset to apex and then to offset of a single
expression in a long term; For FERA, the expression samples
show much more complex temporal variations in the sponta-
neous manner, even with no explicit segmentation of onset,
apex, or offset stages. In such situation, a temporal alignment
becomes crucial for building correspondence among different
sequences. As verified in our experiments, the elastic manner
performs much better than the rigid manner on MMI and
FERA databases. It can be observed that the improvement
becomes more significant as K increases, which indicates that
a larger number of local modes leads to a more elaborate
alignment.

3) The Effect of Low-Level Feature Assignment Manner:
In UMM fitting stage, there are also two options for low-
level feature assignment to each local mode (i.e. Gaussian
component). For hard assignment, each low-level feature must
be assigned to only one certain component according to its
largest probability (i.e. traditional GMM). For soft assignment
applied in our method, each component can obtain a fixed

TABLE I

AVERAGE RECOGNITION ACCURACY (%) WITH DIFFERENT
ASSIGNMENT MANNERS (HARD/SOFT) ON FOUR DATASETS.

(a) CK+ (b) OULU-CASIA (c) MMI (d) FERA.
(USING DENSE SIFT FEATURE)

Fig. 11. Average recognition accuracy (%) with different assignment manners
(hard/soft) on four datasets. (a) CK+ (b) Oulu-CASIA (c) MMI (d) FERA.

number of features with top T probabilities. We compare
these two different manners under different number of local
modes (Gaussian components) K = 4, 8, 16, 32, 64, 128, 256
and further discuss the effect of different values of
T = 64, 128, 256 in soft assignment. A comprehensive evalu-
ation results are listed in Table I, with a graphical illustration
in Figure 11.

As shown, the results based on hard manner can reach their
peak at K = 16 or 32, and then suffer significant degradation
as K increases. It is because that in hard manner, the larger K
leads to fewer features assigned to each Gaussian component,
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TABLE II

AVERAGE RECOGNITION ACCURACY (%) COMPARISON WITH EXPLET OR DIS-EXPLET ON FOUR DATASETS.
(a) CK+ (b) OULU-CASIA (c) MMI (d) FERA. (USING DENSE SIFT FEATURE)

Fig. 12. Average recognition accuracy (%) comparison with ExpLet or Dis-ExpLet on four datasets. (a) CK+ (b) Oulu-CASIA (c) MMI (d) FERA.

which results in inaccurate estimation of the feature covariance
for expressionlet representation. However, in soft manner, a
fixed number of features assigned to each Gaussian component
can guarantee a more accurate estimation of expressionlet,
and hold the increasing trend as K becomes larger. On the
other hand, to consider the effect of different values of T , the
larger T , i.e. the more features selected in each local mode,
does not always yield better performance. The reason may be
that more “noise” features with low probabilities are involved
when applying a larger T .

4) The Effect of Discriminant Learning: Finally we evaluate
the effect of discriminant learning with expressionlets. The
original dimension of expressionlets is 64 ∗ 64 = 4096d as
the low-level features are 64d . For dimension reduction, we
can simply apply unsupervised PCA (to log(C) in Equ. 5) to
obtain a low-dimensional “ExpLet”, or employ the proposed
discriminant learning to obtain more powerful discrimina-
tive expressionlet, which can be denoted as “Dis-ExpLet”.
Here we compare these two schemes by varying dim =
64, 128, 256 under different K , and the results are shown in
Table II and Figure 12. It can be observed that “Dis-ExpLet”
performs much better than “ExpLet” even using a lower
dimension. The improvement is quite significant especially on
MMI (∼ 5.3%) and FERA (∼ 9.7%), which are considered to
be more challenging than CK+ and Oulu-CASIA.

D. Comprehensive Comparisons With Fisher Vector

In this section, we conduct comprehensive comparisons
with the state-of-the-art encoding method Fisher Vector.
The experiments are conducted based on two kinds of descrip-
tors, i.e. SIFT (2D) and HOG (3D). And for Fisher Vector,

we also tune different values of w, h to obtain the best
performance. All of the results are listed in Table III.

According to the results, for w = h = 16 or 24, we can
always observe an approximately rising trend of accuracy as
the number of GMM components K increases. However, for
w = h = 32, there usually exist an obvious degradation as K
increases (except for Oulu-CASIA). It may be caused by that
the patches with a larger scale encode less details which cannot
provide enough local patterns for lots of partitions. Thus when
K becomes larger, the cluster partitions forcibly segment some
similar or related patterns, which brings confusions in pooling
stage for higher-level semantics generation.

For fair comparison, in Table IV we report the performance
based on original “ExpLet” (the feature dimension is reduced
to dim via unsupervised PCA without discriminant learning).
To simplify the discussion, we fix three inessential parameters
as w = h = 24 and T = 64. As shown, the performance
improves gradually with the increasing of the number of
“ExpLet” K and the preserved dimension dim, and the peak
values outperform the FV results significantly. Even with the
same dimension of final FV representation (i.e. 2 ∗ 64 ∗ k =
128k), our method (with dim = 128) always performs a little
better, which proves that the covariance pooling scheme can
capture more dynamic information for expression description
thus benefits the final recognition.

Another observation is about the results based on different
descriptors. For both FV and ExpLet, on CK+, Oulu-CASIA,
and MMI, dense SIFT consistently performs much better
than HOG, while on FERA, the HOG shows clearly superior
to SIFT under all settings. The main difference of the two
descriptors is whether encoding the temporal information,
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TABLE III

AVERAGE RECOGNITION ACCURACY (%) BASED ON FISHER VECTOR ON FOUR DATABASES. (a) CK+ (HOG). (b) CK+ (SIFT).
(c) OULU-CASIA (HOG). (d) OULU-CASIA (SIFT). (e) MMI (HOG). (f) MMI (SIFT). (g) FERA (HOG). (h) FERA (SIFT).

TABLE IV

AVERAGE RECOGNITION ACCURACY (%) BASED ON EXPRESSIONLET ON FOUR DATABASES. (a) CK+ (HOG). (b) CK+ (SIFT).
(c) OULU-CASIA (HOG). (d) OULU-CASIA (SIFT). (e) MMI (HOG). (f) MMI (SIFT). (g) FERA (HOG). (h) FERA (SIFT).

i.e. SIFT is in 2D and HOG is in 3D. We conjecture that for
spontaneous samples in FERA, the variations along temporal
dimension are more complex and thus require more detailed
and elaborate encoding via low-level descriptors.

E. Comparisons With State-of-the-Art Methods

In this section, we compare the final results with
several state-of-the-art methods. Two performance met-
rics, i.e. the mean recognition accuracy on each category

(denoted as “mAcc”) and the overall classification accuracy
(denoted as “Acc”) are measured for comparison. The results
are listed in Table V. The comparisons on CK+, Oulu-CASIA,
and MMI are under exactly the same protocols, and our
“ExpLet” outperforms the existing methods significantly on
both indicators (Note that, for Oulu-CASIA, “mAcc” is equal
to “Acc” as the numbers of samples of all categories are the
same). On FERA, by adopting cross-validation only on the
training set (the same to [46]), we compare the results with 4
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TABLE V

STATE-OF-THE-ART METHODS ON DIFFERENT DATABASES. (“EXPLET*” IS THE RESULTS REPORTED IN [14])

Fig. 13. Confusion matrices based on “Dis-ExpLet” on four datasets. (a) CK+ (b) Oulu-CASIA (c) MMI (d) FERA.

most recent methods. We also review some methods in FERA
challenge [44], in person-independent setting, our result ranks
in the 2nd place, only next to the “avatar” based method [47]
with the accuracy of 75.2%. This may be due to that our
method used fewer (6 vs. 7) subjects for training than [47].
Finally, the confusion matrices based on “Dis-ExpLet” on four
datasets are illustrated in Figure 13. On all posed datasets,
“happy” is always easy to be recognized, while “fear” and
“sad” are more difficult and easy to be confused with each
other. However, on spontaneous dataset FERA, low accuracy
is obtained almost on all of the categories due to the large
variations in natural and different performing manners from
each subject.

VI. CONCLUSION

In this paper, we propose a new method for dynamic
facial expression recognition. By considering two critical
issues of the problem, i.e. temporal alignment and semantics-
aware dynamic representation, a kind of variation modeling
is conducted among well-aligned spatio-temporal regions to
obtain a group of expresssionlets, which serve as the mid-level
representations to bridge the gap between low-level features
and high-level semantics. As evaluated on four state-of-the-
art facial expression benchmarks, the proposed expression-
let representation has shown its superiority over traditional
methods for video based facial expression recognition. As the
framework is quite general and not limited to the task of
expression recognition, an interesting direction in the future is
to exploit its applications in other video related vision tasks,
such as action recognition and object tracking.
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