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In this document, we give additional implementation details and experi-

mental results for the corresponding sections in the main paper to support the

method we proposed.

1. Network Architecture Details

Let c7s1-k denotes a convolution block with k filters of 7× 7 size and stride5

1. dk means a convolution block with k filters of 4 × 4 size and stride 2. Rk

denotes a residual block that contains two convolution blocks with k filters of

3 × 3 size . The last layers at non-root levels in the bottom encoder branch

(note that common features of the root level are encoded by the upper encoder

branch) are implemented by multiple c1s1-8 (i.e., the convolution block with 810

filters of 1 × 1 size and stride 1. uk denotes a 2× nearest-neighbor upsampling

layer followed by a convolution block with k filters of 5 × 5 size and stride 1.

GAP denotes a global average pooling layer. Instance Normalization (IN) is

adopted to the upper encoder branch. In the following, we give the detailed

architectures of each module for training our HDN.15

On general datasets with 128 × 128 resolution inputs:

Upper encoder: c7s1-64, d128, d256, R256, R256, R256
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Bottom encoder: c7s1-64, d128, d256, d256, d256, GAP, c1s1-8

Decoder: R256, R256, R256, u128, u64, c7s1-3

Discriminator & Classifier: d64, d128, d256, d51220

On the Fashion-MNIST with 28 × 28 resolution inputs:

Upper encoder: c7s1-32, d64, d128, R128, R128, R128

Bottom encoder: c7s1-32, d64, d128, R128, R128, R128, GAP, c1s1-8

Decoder: R128, R128, R128, u64, u,32 c7s1-1

Discriminator & Classifier: d32, d64, d128, d25625

2. Disentanglement Results on Challenging ImageNet-animal Data
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Figure 1: Typical samples of the constructed hierarchical data on ImageNet. Images within a

purple rectangular box are instances of a leaf-level category. Images within a green rectangular

box belong to one common super-category. The super-categories within the red rectangular

box share one common ancestor, i.e. the animal .

In this section, we show results of HDN on the collected challenging ImageNet-

animal data and analyze the limitations of our method. To be specific, We collect

images from 3 super categories including the house cats, dogs and big cats on

the ImageNet. Each super category contains 4 fine-grained sub-categories, and30

we thus construct a three-level hierarchical structure (the root is animal). To
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train and test our HDN, all images are split by the official train/test protocol

and preprocessed by a pre-trained faster-rcnn head detector, the detection re-

sults of which are then cropped and resized to 128*128 resolution. Examples

of the preprocessed hierarchical data are shown in Fig.1. Network architecture35

and training hyper-parameters are same with the settings on CelebA, CADCars

and ShapeNet, as introduced in Sec.3.4 of the main paper and the text in Sec.1

of this document.
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Figure 2: 2D tSNE visualization of the disentangled Fl on the test set of ImageNet-animal at

different levels. H, D and B mean House cat, Dog and Big cat, respectively. E, P, Si, Ta, Cor,

G, Hu, Sa, Cou, Le, Li and Ti mean Egyptian, Persian, Siamese, Tabby cat, Corgi, German

shepherd, Husky, Samoyed, Cougar, Leopard, Lion, and Tiger, respectively.

Source Target 𝐹𝐹1 𝑅𝑅2 𝑅𝑅3 𝑅𝑅2+𝑅𝑅3

Figure 3: Semantic translation results of the source images controlled by hierarchically disen-

tangled features of the targets. On such hierarchical data, all levels are complex categorical

variation, i.e., R2 should encode the information of the image being one of the three super-

categories (e.g., the house cat), while R3 should contain the information of the image being

one of the further divided fine-grained sub-categories (e.g., one kind of house cat).

We first quantitatively evaluate the hierarchical classification accuracy of
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generated images conditioned on the disentangled features as we did in Sec.4.140

of the main paper. The results on real test images at level 2 and 3 are 0.9293

and 0.8760, and on the generated images are 0.9493 and 0.8160, respectively.

Fig.2 shows the tSNE embedding results using different levels of Fl. From these

results, we may infer that our method has successfully disentangled the desired

semantic features at different levels, since the discriminability are progressively45

increased and the generalization ability on the generated images also seems sat-

isfactory. However, qualitative investigation reveals that it is not the truth of

all. Fig.3 shows some semantic translation results of the source object images

conditioned on the disentangled hierarchical features of the targets. It is ob-

served that the disentangled semantic information from the targets can only50

change partial appearance (e.g., the textures or colors) of the source images,

while lose the necessary and even the key information to recognize the objects

at that level (e.g., the shape of the lion rather than the skin color). Besides,

by purely changing only one particular level of features, the generated images

sometimes look strange.55

Reasons for these phenomena are mainly in two aspects. On the one hand,

there exists too much information that can be leveraged for classification. Since

these ImageNet categories themselves are too complex, the differences within

them are in many aspects. Consequently, the classifiers can easily find “short-

cuts” and extract only partial discriminative primitives from the objects at that60

level. Sometimes these “shortcuts” are even the wrong evidence, which is the

so-called bias problem in many powerful ImageNet classification models (e.g.,

the images containing black man are predicted as basketball) [1, 2]. From the

qualitative results of HDN in Fig.3, we also find that the semantic information

of disentangled features is not sufficient to interpret the objects of being the65

categories at that level, and sometimes the semantic meanings are very diffi-

cult to be understood by humans. This tells us that sometimes deep features

can perform well in terms of certain quantitative measurements, but may not

work in the manner as we expected. Even so, our HDN can diagnose this kind

of problems as done in Fig.3. On the other hand, the poor image quality is70
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partially owing to the capacity of GAN. Generating high-quality images on the

ImageNet is notoriously difficult for GAN-based methods until now, due to the

much complex data distribution. In our HDN framework, in order to disentan-

gle semantic commonality and individuality among categories, it is required to

synthesize nonexistent categories combined by semantics from different levels,75

which further makes the objectives of distribution fitting harder for the GAN-

based framework. We believe that the performance of HDN would be improved

on the ImageNet dataset with the development of generative frameworks.

Neutral

Male Female

Smile Sedan

Minibus Sports

Hatchback

Pickup

SUV

CompCars

NeutralSmile

RAF
Car

Figure 4: Typical samples of the hierarchical data on the RAF and CompCars datasets. Each

image represents one leaf-level category (e.g., different races or ages, different car make models,

etc.). Images within a green rectangular box belong to one common super-category (e.g., the

smile, the sedan, etc.). The super-categories within a red rectangular box share one common

ancestor.

3. Cross Dataset Study

Learning general representation that can be applied across datasets is one80

of the long goals for machine learning and computer vision. In this section,

we briefly evaluate our method on datasets which have similar categorical an-

notaions but quite different domain styles, compared to the datasets we have

evaluated in previous experiments. To be specific, we evaluate HDN on a quite

challenging facial expression dataset named RAF [3] and a car dataset named85

CompCars [4], using models trained on CelebA and CADCars, respectively. The
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Figure 5: Semantic translation results between image pairs from different datasets (i.e., CelebA

and RAF, and CADCars and CompCars.), using all levels of disentangled features of the tar-

gets to replace those of the sources. Compactly cropped face images without hair information

are from RAF, while the other faces are from CelebA. It is found that the information of gen-

der and smile (i.e., non-leaf level semantics) is correctly transferred. Car images in the right

second column (i.e., the Target column) except the one in the last row are from CompCars,

and the other cars are from the CADCars. It is observed that the car types and poses are

changed accordingly.

RAF dataset provides expressions, race, age range and gender attributes anno-

tations. Besides, the released images are compactly aligned which have little

information about hair colors. Therefore, the leaf-level categories are organized

according to the race or age range for the RAF dataset, instead of hair colors90

originally defined on the CelebA. As for the CompCars dataset, it contains 163

car makes with 1,716 car models, and also provides the car type annotations

(i.e., SUV, Sedan, Sports, etc.). Based on these annotations, we replace the

pose labels at the leaf-level on CADCars with different car model annotations

for the CompCars dataset1. Typical examples of the two hierarchical data are95

shown in Fig.4.

Fig.5 shows the semantic translation results across datasets. It is observed

that the information of gender and smile (i.e., the semantic at non-leaf levels)

is correctly disentangled and transferred. For the translation between image

1It does not provide the same pose annotations as used on the CADCars.
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pairs from the CADCars and the CompCars, given the unseen target image100

of the Hatchback car type from the CompCars (the fifth row), the translated

result of the source SUV image looks like nothing on the earth (like a SUV but

has cambered shape). Besides, we also find it difficult to translate the source

images which are from unseen dataset, as shown in the last car case, which is

mainly due to the domain shift for the generator (i.e., the upper encoder branch105

can not extract meaningful basic information from the unseen dataset for the

subsequent hierarchical feature aggregation and image generation).
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