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Abstract— Symmetric positive definite (SPD) matrices have
been employed for data representation in many visual recognition
tasks. The success is mainly attributed to learning discrimina-
tive SPD matrices encoding the Riemannian geometry of the
underlying SPD manifolds. In this paper, we propose a geometry-
aware SPD similarity learning (SPDSL) framework to learn
discriminative SPD features by directly pursuing a manifold-
manifold transformation matrix of full column rank. Specifically,
by exploiting the Riemannian geometry of the manifolds of fixed-
rank positive semidefinite (PSD) matrices, we present a new
solution to reduce optimization over the space of column full-rank
transformation matrices to optimization on the PSD manifold,
which has a well-established Riemannian structure. Under this
solution, we exploit a new supervised SPDSL technique to
learn the manifold-manifold transformation by regressing the
similarities of selected SPD data pairs to their ground-truth
similarities on the target SPD manifold. To optimize the proposed
objective function, we further derive an optimization algorithm
on the PSD manifold. Evaluations on three visual classification
tasks show the advantages of the proposed approach over the
existing SPD-based discriminant learning methods.

Index Terms—Discriminative SPD matrices, Riemannian
geometry, SPD manifold, geometry-aware SPD similarity
learning, PSD manifold.

I. INTRODUCTION
ECENTLY, symmetric positive definite (SPD) matrices
of real numbers have appeared in many branches
of computer vision. Examples include region covariance
matrices for pedestrian detection [1], [2] and texture categori-
zation [3]-[5], joint covariance descriptors for action
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Fig. 1.  Three different learning schemes on SPD manifolds. The first
(a)—(b) flattens the original manifold S ym’_}_ by tangent space approximation

and then learns a map g to discriminative Euclidean space R4, The second
(a)—(c)—(b) is designed to first embed S ym’_}_ with an implicit map ¢ into
RKHS H and then learn mapping / to discriminative Euclidean space R4,
The last (a)—(d) aims to learn a map f from the original SPD manifold
Sym'} to a more discriminative SPD manifold Sym'!. Here, X € Sym'| and
f(X) € Sym"! are the SPD matrices and Ty Sym’} and Ty (x)Sym'} are the
tangent spaces.

recognition [5], [6], diffusion tensors for medical image
segmentation [4], [7], [8] and image set based covariance
matrices for video face recognition [9]-[11]. Due to
the effectiveness of measuring the useful second-order
information of processed data, such SPD matrix features
have been shown to provide powerful representations for still
images and dynamic videos in the field of computer vision.

However, such advantages of the SPD matrices are often
accompanied by the challenges of the non-Euclidean data
structure that underlies a specific Riemannian manifold
[71, [8]. Applying Euclidean geometry directly to SPD matri-
ces often results in poor performance and undesirable effects,
such as the swelling of diffusion tensors in the case of
SPD matrices [7], [12]. To overcome the drawbacks of the
Euclidean representation, researchers [7], [8], [13] have con-
ducted extensive studies on Riemannian metrics, e.g., the
affine-invariant metric [7] and Log-Euclidean metric [8], to
encode the Riemannian geometry of SPD manifolds so that
the manifold-valued data can be treated appropriately.

By applying these classic Riemannian metrics, several
studies extend traditional Euclidean algorithms to work on
the manifolds of SPD matrices to learn more discriminative
SPD matrices or their vector forms. To this end, these
studies exploit effective methods on an SPD manifold by
either flattening it via tangent space approximation
[2], [14]-[16], [51] (See Fig.1 (a)—(b)) or mapping it into a

1051-8215 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



2514

high-dimensional reproducing kernel Hilbert space (RKHS)
[31, [4], [9], [17]-[20], [53] (See Fig.l1 (a)—(c)—(b)).
Obviously, both families of methods inevitably distort the
geometric structure of the original SPD manifold by mapping
the manifold into flat Euclidean space or high-dimensional
RKHS. Thus, they often achieve sub-optimal solutions
for the problem of learning the discriminative features of
SPD manifolds. Furthermore, both learning schemes are
computationally expensive due to the increased dimensions
of the processed SPD matrices.

Several techniques were introduced for dimensionality
reduction on Riemannian manifolds in [21]-[28]. For example,
in [22]-[25], traditional nonlinear techniques were extended
to their Riemannian counterparts by introducing various
Riemannian geometry concepts, such as the Karcher
mean, tangent spaces and geodesics, in locally linear
embedding (LLE), Hessian LLE and Laplacian eigenmaps.
As these methods do not define parametric mapping to
low-dimensional space, they are limited to the transformation
setting. In contrast, some studies, such as [26] and [27],
encode the parametric mapping when pursuing the target
low-dimensional manifold. However, they are originally
designed for different types of Riemannian manifolds (such
as Grassmann manifolds), not SPD manifolds.

For SPD data, the existing dimensionality reduction meth-
ods [5], [29], [52] aim to pursue a column full-rank trans-
formation matrix to map the original SPD manifold to
lower-dimensional discriminative SPD manifold, as shown in
Fig.1 (a)—(d). However, since directly learning the manifold-
manifold transformation matrix is difficult, [S] decomposed it
to the product of an orthonormal matrix with a matrix in a
general linear group and required the employed Riemannian
metrics to be affine invariant. In this process, optimizing the
manifold-manifold transformations is equivalent to optimizing
over orthonormal projections. Although the additional require-
ment simplifies the optimization of the transformation, it does
not only reduce the original solution space but inevitably
excludes all non-affine-invariant Riemannian metrics,! such
as the well-known Log-Euclidean metric, which has proved
to be much more efficient than the affine-invariant metric [8].
While the work [29] exploited the Log-Euclidean metric
under the same scheme, it attempted to learn a tangent map,
which implicitly approximates the tangent space and hence
introduces some distortions of the true geometry of SPD
manifolds.

In this paper, under the last scheme (see Fig.1 (a)—(d)),
we propose a new geometry-aware SPD similarity learn-
ing (SPDSL) framework to expand the problem domain of
learning discriminative SPD features by exploiting either
affine-invariant or non-affine-invariant Riemannian metrics on
SPD manifolds. There are three main contributions in this
work to realize the SPDSL framework:

o By exploiting the Riemannian geometry of the manifolds

of fixed-rank positive semidefinite (PSD) matrices, our
SPDSL framework provides a new solution to directly

1Although the recent extension work [30] studied this limitation, it merely
introduced an approximated adaption of the Log-Euclidean metric.
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learn the manifold-manifold transformation matrix. As no
additional constraint is required, the optimal transforma-
tion is pursued in a favorable solution space, enabling
a wide range of well-established Riemannian metrics to
work.

o To fulfill the solution, a new supervised SPD similarity
learning technique is proposed to learn the transformation
by regressing the similarities of selected SPD pairs to the
target similarities on the resulting SPD manifold.

o« We derive an optimization approach that exploits the
classic Riemannian conjugate gradient (RCG) algorithm
on the PSD manifold to optimize the proposed objective
function.

II. BACKGROUND

Let Sym, = {H : HT = H)} be a set of real, symmetric
matrices of size n x n and Sym;} = {X € Sym, : ' Xo > 0,
Vo € R",w # 0} be a set of SPD matrices. The mapping
space Sym, is endowed with the usual Euclidean metric
(i.e., inner product) (Hi, Hy) = Tr(HzTHl). As noted in
[7] and [8], the set of SPD matrices Symjlr is an open convex
subset of Sym,. Thus, the tangent space to Sym,} at any
SPD matrix in it can be identified with the set Sym,. The
smoothly varying family of inner products on each tangent
space is known as the Riemannian metric, allowing the space
of SPD matrices Sym; to yield a Riemannian manifold. Based
on this Riemannian metric, the geodesic distance between
two elements Xi, Xo on the SPD manifold is generally
measured by (logy, (X2),logy, (X2))x,. Several Riemannian
metrics and divergences have been proposed to equip SPD
manifolds. For example, the affine-invariant metric [7], Stein
divergence [31], and Jeffereys divergence [17] are designed
to be invariant to affine transformation of SPD manifolds;
that is, for any M € GL(n) (i.e., the group of real invert-
ible n x n matrices), the metric function d4 has the prop-
erty 5%(X1, X)) = 5/24(MX1MT, MX>MT). In contrast, the
Log-Euclidean metric [8], Cholesky distance [32] and Power-
Euclidean metric [32] are not affine invariant Riemannian met-
rics. Among these metrics, only the affine-invariant metric [7]
and Log-Euclidean metric [8] define a true geodesic distance
on SPD manifolds [4]. In addition, Stein divergence is widely
used due to its favorable properties and strong performance
in visual recognition tasks [31]. Therefore, this paper focuses
on studying these three representative Riemannian metrics for
the manifolds of SPD matrices.

Definition 1: By defining the inner product in the tan-
gent space at one anchor point X| on the manifold
of SPD matrices as (Hy, Ho)x, = (X;?HiX;'?
Xl_l/szXl_l/z) and the logarithm map as logy (X2) =
Xi/z log(Xl_l/ngXl_l/z)Xi/z, the geodesic distance between
two SPD matrices X1, X2 on the manifold is induced by the
affine-invariant metric (AIM) as

—1)2

—1/2
2(X1, Xa) = [[log(X; *X2x, )% (1)

Definition 2: The approximated geodesic distance between
two SPD matrices X1, X2 on the SPD manifold is defined
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using Stein divergence as
Xi+X 1
62(X1, X») = Indet (%) — 3 Indet(X1X2). ()

Definition 3: By defining the inner product in the
tangent space at the SPD point Xi on the SPD man-
ifold as (Hi, Hy)x, = (Dlog(X)[H1],Dlog(X)[H])
(Dlog(X)[H] denotes the directional derivative) and the log-
arithm map as logy (X2) = D~ !log(X1)[log(X2) —log(X1)],
the geodesic distance between two SPD matrices X1, X7 is
derived by the Log-Euclidean metric (LEM) as

9 (X1, X2) = | log(X1) — log(X2)||%- 3)

III. PROPOSED APPROACH

In this section, we propose a new solution of Riemannian
geometry-aware dimensionality reduction for SPD matrices
and then present our supervised SPD similarity learning
method under the solution. Finally, we give a detailed descrip-
tion of our optimization algorithm.

A. Riemannian Geometry-Aware Dimensionality Reduction
on SPD Manifolds

Given a set of SPD matrices X = {Xy,..., Xn}, where
each matrix X; € Symj{, and a transformation W € R"*™
(m < n) is pursued for mapping the original SPD manifold
Sym; to a lower-dimensional SPD manifold Sym;},. Formally,
this procedure attempts to learn the parameter W of a mapping

in the form f : Sym;} x R"™ — Symt, which is defined as:
X, W) =WiX:w. “)

To ensure the resulting mapping yields a valid SPD manifold
Sym;r1 5 WI'X;W > 0, the manifold-manifold transforma-
tion W is required to be a column full-rank matrix W e R ™.

Since the solution space is a non-compact Stiefel manifold
RZ*™, where the distance function has no upper bound,
directly optimizing on the manifold is infeasible. Fortunately,
the conjugates (taking the form of WW7') of column full-
rank matrices span a compact manifold Sym; (m) of posi-
tive semidefinite (PSD) matrices, which is a quotient space
of R7*™ and has a well-established Riemannian structure.
In contrast, by additionally assuming the transformation W
to be orthogonal, as done in [5], Eqn.4 can be optimized on
a compact Stiefel manifold, which is a subset of the non-
compact Stiefel manifold R?*™. Further, for affine-invariant
metrics (e.g., AIM), optimizing on a Stiefel manifold can be
reduced to optimizing over Grassmannian [5]. However, such
an orthogonal solution space is smaller than the original solu-
tion space R, making the optimization theoretically yield
a suboptimal solution of W. Thus, we perform optimization
on the PSD manifold to search for the optimal solution of W.
We now study the geometry of the PSD manifolds Sym;’ (m).

For all orthogonal matrices O of size m x m, the map
W — WO leaves WWT unchanged. This property of W
results in the equivalence class of the form [W] = {W 0|0 <
R™m QT Q = I,}, and yields a one-to-one correspondence
with the rank-m PSD matrix Q@ = WWI! ¢ SymF(m).
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By quotienting this equivalence relation out, the set of rank-
m PSD matrices Sym;" (m) is reduced to the quotient of the
manifold R}*™ by the orthogonal group O(m) = {0 €
R™m QT 0 = I,}, ie., Sym}(m) = R™™/O(m). With
the studied relationship between Sym; (m) and R!*™, the
function ¢ : Sym;(m) - R : Q + ¢(Q) is able to derive
the function g : R — R : W = g(W) defined as g(W) =
#(WWT). Here, g is defined in the total space R”*™ and
descends as a well-defined function in the quotient manifold
Sym;F(m). Therefore, optimizing over the total space R!*™
is reduced to optimizing on the PSD manifold Sym (m),
which has been thoroughly studied in several works [33]-[36].
Since a PSD manifold is a quotient space, each element on
the PSD manifold is actually an equivalence class [W]. Thus,
optimizing on the PSD manifold addresses W directly rather
than WW7 . To more easily understand this point, one can
take the well-known Grassmann manifold, where each element
can also be represented by the equivalence class [W] and the
optimization on it seeks the solution of W directly, as an
analogy. Similarly the optimization over the PSD manifold
is actually direct optimization of W rather than Q = WW7.
Thus, we design an objective function directly on W instead
of 0, as done in the existing works [33], [35] and the popular
manifold optimization (manopt) toolbox.2

It can be further proved that the quotient space Sym;' (m)
presents the structure of a Riemannian manifold [33]. As a
result, by endowing the total space R]}*” with the usual
Riemannian structure of Euclidean space (i.e., the inner prod-
uct (Hy, Hy) = Tr(HJ Hy)), the quotient space Sym;’ (m)
follows a Riemannian structure. The inner product occurs in
the tangent space Ty of the manifold RZ*™. In the case of
the manifold Sym; (m), the corresponding tangent space is
decomposed into two orthogonal subspaces, the vertical space
Vw = {WQ|® € R QT = —Q} and the horizontal space
Hw = {H € Tw|H" W = WT H}, to achieve the inner prod-
uct (Hy, Hp). This Riemannian metric allows several classic
optimization techniques, such as the Riemannian conjugate
gradient (RCG) algorithm [33], to work on the PSD manifold
Sym; (m). For more detailed background on the Riemannian
geometry of PSD manifolds, please refer to [33] and [35].

By exploiting the Riemannian geometry of the fixed-rank
PSD manifold Sym;" (m), we create the possibility of directly
pursuing an optimal column full-rank manifold-manifold
transformation matrix to solve the problem of dimensionality
reduction of SPD features.

B. Supervised SPD Similarity Learning

As previously studied, under the proposed framework of
dimensionality reduction of SPD features, a target SPD man-
ifold Sym,! of lower dimensionality can be derived. On the
new SPD manifold Sym, the geodesic distance between the
two original SPD points X;, X; is obtained by:

F(Xi, X)) = (f(Xi, W), f(Xj, W)), 5)

where f(X;, W) is the manifold-manifold transformation
computed by Eqn.4, and ¢ is the geodesic distance induced

2The manopt toolbox is available at http://www.manopt.org.
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by the commonly used affine-invariant or non-affine-invariant
Riemannian metrics in Eqn.1, Eqn.2 and Eqn.3.

In this paper, we focus on the problem of supervised SPD
similarity learning for more robust visual classification tasks,
where SPD features have shown great power. Formally, for
each SPD matrix X; € Sym,J{, we define its class indicator
vector: y; = [0,...,1,...,0] € R, where the k-th entry is 1
and the other entries are 0, indicating that X; belongs to the
k-th class of ¢ total classes. As discriminant learning tech-
niques developed in Euclidean space, we assume that prior
knowledge is known regarding the distances between pairs of
SPD points on the new SPD manifold Sym;!. Let us consider
the similarity or dissimilarity between pairs of SPD points: two
SPD points are similar if the similarity based on the geodesic
distance between them on the new manifold is larger, while
two SPD points are dissimilar if their similarity is smaller.

Given a set of similarity constraints, our goal is to learn
the manifold-manifold transformation matrix W that para-
meterizes the similarities of SPD points on the target SPD
manifold Sym;),. For this purpose, we exploit the supervised
criterion of centered kernel target alignment [37]-[39] to learn
discriminative features on the SPD manifold by regressing the
similarities of selected sample pairs to the target similarities.
Formally, our supervised SPD similarity learning (SPDSL)
approach is based on maximizing the following objective
function:

(UG ok(WY)U,G o (YYT)) £

JW) = UG ok(WU|x

st W e R,
(6)

where (-) £ and || - || £ are the Frobenius inner product and the
Frobenius norm, respectively. The elements of matrix k(W)
encode the similarities of the SPD data, while the elements
of YYT present the ground-truth similarities of the involved
SPD points. The matrix G is used to select the pairs of
SPD points whoTse corresponding elements are 1. The matrix
U =1y - INA}N is employed to center the data similarity
matrix k(W) and the similarity matrix YY7 on the labels.
N is the number of samples, Iy is an identity matrix of
size N x N, 1y is a vector of size N with all entries being
ones, ¥ = [yl,...,yN]T is assumed to be centered, i.e.,
UYY"HU — YYT, for simplicity. In the following, we
present the formulations of the matrices k(W) and G in greater
detail.

More specifically, the matrix k(W) in Eqn.6 encodes the
similarity between each pair of SPD points (X;, X;) on the
SPD manifold Sym; and takes the form:

kij (W) = exp(—p6*(Xi, X)), (7)

where 62(X;, X j) is computed using Eqn.5, £ is typically
fixed as f = ﬁ and o is empirically set to the mean distance
of the original training sample pairs. Eqn.7 respects a form of
the Gaussian kernel function. Nevertheless, as the objective
function Eqn.6 can be expressed as the sum of the similarity
regression results of selected sample pairs, Eqn.7 serves as
a tool to encode the similarities and is thus not necessarily
positive definite (PD).
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In practical applications, the computational burden of
handling the full kernel matrix k(W) on the SPD manifold
scales quadratically with the size of the SPD training data.
To address this problem, we exploit graph embedding [40]
to select a limited number of data pairs to construct a sparse
kernel matrix (non PD) with a large number of elements
being zero. The matrix G is defined to select the pairs of
SPD points for SPD similarity learning. By using this matrix,
G o k(W) can be regarded as the sparse kernel matrix, where
the operation o denotes the Hadamard product and the matrix
G = G, + Gp. Here, G, and G}, are defined as:

1, if X; € Ny(X; X; e Ny(X;
Gl jy= {10 0 € Mo or Xy € Mo
0, otherwise,
L. 1, if X; € Np(Xj) or X; € Np(X;
Gy(i, j) = € Ny or Xy e Mo
0, otherwise,

where Ny, (X;) is the set of v, nearest neighbors of X; that
share the same class label as y;, and Np(X;) is the set of vy
nearest neighbors of X; with different class labels from y;.
According to the theory of graph embedding [40], the within-
class similarity graph G, and the between-class dissimilarity
graph Gy, respectively defined in Eqn.8 and Eqn.9, can
encode the local geometric structure of the processing
data space. Consequently, in addition to accelerating the
discriminant similarity learning on the SPD manifolds, graph
embedding can learn the discriminative information of SPD
data and characterize the local Riemannian geometry of the
underlying SPD manifold. The efficiency and effectiveness
of the proposed discriminant learning approach on SPD
manifolds is further studied in the experimental section.

C. Riemannian Conjugate Gradient Optimization

As discussed above, optimization in the solution space
R7}*™ of the column full-rank transformation matrices in our
objective function can be reduced to optimization on the
Riemannian manifold of rank-m PSD matrices, Sym; (m).
Therefore, in this section, we exploit the RCG algorithm [33]
to optimize our objective function J (W) in Eqn.6 by deriving
its corresponding gradient on the PSD manifold Sym (m).

Algorithm 1 Optimization Algorithm

Input: The initial matrix Wy

1. Hy < 0, W < W,.

2. Repeat

3. Hp < —VwJ(Wi) + nt(Hi—1, Wi—1, Wy).

4. Line search along the geodesic y in the direction Hj from
Wi—1 =y (k—1) to find Wy = argminw J(W).

5. Hk,1 < Hk, Wk,1 < Wk.

8. Until convergence

Output: The optimized matrix W

Similar to the traditional conjugate gradient (CG) algo-
rithm developed in Euclidean space, our employed RCG
algorithm is an iterative procedure. As given in Algorithml,
an outline for the iterative part of the RCG algorithm is
as follows: at the k-th iteration, we find Wi by searching
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the minimum of 7 along the geodesic in direction Hj_
from Wjy_;, compute the Riemannian gradient Vy J(Wy)
at this point, and then choose the new search direction
Hy = —VwJ(Wy) + nt(Hg—1, Wi—1, Wi). In the iterative
procedure, the Riemannian gradient Vy 7 (W) can be eas-
ily approximated from its corresponding Euclidean gradient
Dw J (W) by Vg T (Wi) = Dw T (Wi) — Wi W Dy T (Wy),
and the operation 7 (Hy—_1, Wi_1, W) is the parallel transport
of tangent vector Hy_; from Wj_; to Wj. For more details
about the RCG algorithm, we refer readers to [5] and [33].
For now, we only need to compute the Euclidean gradient
Dw J (W) for the proposed objective function 7 (W) in Eqn.6.
To obtain the Euclidean gradient Dy J (W), we express its
corresponding directional derivative Dy J (W)[W] in direc-
tion W. Formally, they are related by the following equality:

DwJ(W)[W] = (DwJ (W), W). (10)

We compute the adjoint of the directional derivative to
obtain the Euclidean gradient. By employing the standard
properties of directional derivatives, Dy J (W)[W] can be
derived by:

DwJ (W)[W]
(UG o Dyk(W)[WIU, G o (YY) £IIL] £
[
(£,G o (YY) (1=, UG o Dwk(W)[WIU) £
I1£1%

Go(YYT")y gwW)c
- U)r, (11
IC1F ||£||§:) 7 (4D

where k(W) is formulated by Eqn.7, L = UG o k(W)U,
(-)r indicates the Frobenius inner product, and || - || # denotes
the Frobenius norm.

Accordingly, the key issue in Eqn.l11 is to estimate
Dwk(W). When ¢ in Eqn.5 is the geodesic distance of AIM
defined in Eqn.1, the Euclidean gradient of k(W) can be
derived as:

(Dwk(W)[W], U(

Dwk;j (W)
A A PR R |

= —4pkij(W)(B; X[ — B; X Hlog(X;X: X, 7), (12)
where B; = X;W, X; = W/ X; W € Sym;}.

For other affine-invariant metrics, such as Stein diver-
gence [31], the corresponding Euclidean gradient of k(W)
with the geodesic distance function J defined in Eqn.2 can
be computed by:

Dwkij (W)

= —pkij(W)((Bi + B))A;' — BiX;' — B;X;"), (13)
where A;; = WT@W and is therefore applicable in our
proposed framework.

By endowing the SPD manifold with the non-affine invariant
metric LEM, it seems difficult to calculate the Euclidean
gradient of Dy k(W) due to the matrix logarithms it contains.
Thus, we study the computation of the Euclidean gradient for
the LEM case in the following.
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First, we decompose the derivative of LEM w.r.t. W into
three derivatives with the trace form Tr(-):

Dy (|| log(W" X; W) — log(W" X; W)|3.)
= Dw(Tr(log> (WT X;W)) + Dw (Tr(log>(WT X ; W))
—2Dw(Tr(log(WT X; W) log(W' X ; W))). (14)

Proposition 1: The derivatives of the three trace forms
Tr(:) in Eqn.14 can be computed by (Here, B; = X;W,
Xi=WIix;w):

Dy (Tr(log?(X;)) = 4B;Dlog(X)[log(X))].  (19)

Dw(Tr(log>(X;)) = 4B;Dlog(X j)[log(X;)].  (16)

Dy (Tr(log(X;) log(X,)) = 2B;Dlog(X;)[log(X ;)]
+2B;Dlog(X j)[log(X;)]. (17)

Proof: The three formulas for the gradients with the matrix
logarithm correspond to the three formulas with rotation
matrices in [41, Sec. 5.3], where a detailed proof is given.

By using Proposition 1. (i.e., Eqn.15, Eqn.16, Eqn.17) and
the sum rule of directional derivatives, we derive Dwk(W),
where J is the geodesic distance of the LEM in Eqn.5 as:

Dwki;(W) = —4(B;Dlog(X;)[log(X;) — log(X )]

+ B;Dlog(X )[log(X ;) — log(X:)1) Bki; (W).
(18)

To calculate Eqn.18, we apply the block triangular
matrix function developed in [42] to compute the form of
Dlog(XA )[H], which is the directional (Fréchet) derivative of
log at X € Sym, along H € Sym,. The following theorem
shows that the directional derivative appears as the (1, 2) block
of the resulting big matrix when f : X +— log(X) is evaluated
at a certain block triangular matrix.

Theorem 1: Let f : X > log(X) be 2n — 1 times
continuously differentiable on G and let the spectrum of X
lie in G, where G is an open subset of R. Then

f([),f I;D:{f(oX) Dlog(X)[H]}. (19,

f(X)
Proof: The result was proved by Najfeld and Havel
[43, Th. 4.11] under the assumption that f is analytic.

The directional derivative of the matrix logarithm can
be easily computed using Theorem 1. The pseudo matlab
code for computing Dlog(X)[H] is: n = size(X, 1); Z =
zeros(n); A = log([X, H; Z, X]); D = A(L:n, (n+1):end), where
D = Dlog(X)[H].

With the gradient formulas derived in Eqn.12, Eqn.13
and Eqn.18, the Euclidean gradient Eqn.11 of the objective
function Eqn.6 for these cases can be computed to feed into
the exploited RCG algorithm on the PSD manifold. Since the
global convergence of the RCG algorithm has been thoroughly
studied [44], we do not investigate it any further. The main
time cost of the algorithm is computing the gradient in Eqn.11,
O(lkon*m + lkynm?) (I is the iteration number, ko and ki
denote the number of selected samples and pairs, respectively,
and n and m indicate the dimensions of the original and target
manifolds, respectively) in the LEM case. In the experiment,
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we also study the running time of each iteration of the
algorithm when varying the number of selected between-class
pairs for each SPD sample.

IV. EXPERIMENTS

In this section, we study the effectiveness of the proposed
geometry-aware SPD similarity learning (SPDSL) approach by
conducting experimental evaluations of three visual classifica-
tion tasks: face recognition, material categorization and action
recognition.

In these three tasks, the SPD features have been shown to
provide powerful representations for images and videos via
set-based covariance [9]-[11], region covariance [1], [2] and
joint covariance descriptors [5], [6]. Therefore, they are natural
choices to evaluate the proposed SPDSL exploiting the AIM,
Stein divergence and LEM.

To evaluate the effectiveness of the proposed SPDSL
approach, we compare three categories of SPD-based learning
methods: basic Riemannian metric baseline methods, kernel
learning based SPD discriminant learning methods and dimen-
sionality reduction based SPD discriminant learning methods:

1) Basic Riemannian metrics on SPD manifolds: Affine-
invariant metric (AIM) [7], Stein divergence [31],
Log-Euclidean metric (LEM) [8]

2) Kernel learning based SPD matrix learning methods:
PLS-based covariance discriminative learning (CDL)
[9], Riemannian sparse representation (RSR) [3] and
Log-Euclidean kernels (LEK) [45]

3) Dimensionality reduction based SPD matrix learning
methods: Log-Euclidean metric learning (LEML) [29]
and SPD manifold learning (SPDML-AIM and
SPDML-Stein) [5] with AIM and Stein divergence

Note that the proposed SPDSL belongs to the last category
of SPD discriminant learning methods. As this paper focuses
on the problem of supervised SPD discriminant learning, we
report the performance of the original discriminant learning
methods, such as SPDML, rather than performance when
further coupling them with other classifiers, as done in [5].
In addition, to study the discriminant learning power of
our proposed framework, we replace its supervised learning
scheme with that of SPDML but still perform optimization
on the exploited solution space. The adaptions of the pro-
posed SPDSL are denoted SPDSL-AIM*, SPDSL-Stein* and
SPDSL-LEM*.

For RSR, the parameter S is densely sampled around the
order of the mean distance, and the parameter /4 is sampled
in the range of [0.0001, 0.001,0.01,0.1]. For LEK, there
are three implementations based on polynomial, exponential
and radial basis kernels, which are, respectively, denoted
LEK-x,, LEK-x,, and LEK-«,. For LEK-x,, and LEK-«,,,
we densely sample the parameter n from 1 to 50. The
parameters S in LEK-x, and A in the three LEK versions are
all tuned in the same way as RSR. For LEML, the parameter #
is tuned in the range of [0.1, 1, 10], and ¢ is tuned from 0.1
to 0.5. For SPDML and our SPDSL method, the maximum
iteration number of the optimization algorithm is set to 50,
the parameter v,, is fixed as the minimum number of samples
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Fig. 2.

Video frames from the YTC video dataset [46].

in one class, and the dimensionality of the lower-dimensional
SPD manifold and v, are tuned by cross-validation. The
parameter S in our method is set to f = ﬁ, where ¢ is
equal to the mean distance of all pairs of training data.

A. Face Recognition

In the first experiment, we use the YouTube Celebri-
ties (YTC) video face database [46] to perform video face
recognition. The dataset is challenging and widely used in
video face recognition research. It has 1,910 video clips of
47 subjects collected from YouTube. Most of the clips contain
hundreds of frames, as shown in Fig. 2, which include noise
and are often low resolution, highly compressed, and low
quality.

For the testing protocol, following [9], [10], [29], the dataset
is randomly split into the gallery and the probe, which have
3 image sets and 6 image sets, respectively, for each subject.
The process of random testing is repeated 10 times to evaluate
the video face recognition.

In our experiment, each face image in a video is cropped
into a 20 x 20 intensity image and is then histogram-equalized
to eliminate lighting effects. Following [9], [29], we extract the
set-based covariance matrix for each video sequence of frames
in this dataset. To avoid matrix singularity, we add a small
ridge oI to each covariance matrix X, where 0 = 1073 x
trace(X) and I is the identity matrix. In the literature, the
mean face in each video has been proved to benefit video face
recognition. Therefore, we improve the set-based covariance
matrix feature by concatenating it with the mez}n to yield a
E—HT“L ﬂ], where

n 1
peRlandX e S ym‘j_ represent the mean and the covariance
matrix of one image set. Note that the dimensions of the target
manifolds for the dimensionality reduction methods are all set
to 40 for the YTC database.

As can be seen from Table I, the baseline method LEM
outperforms the other two baselines, AIM and Stein, in most
cases, which demonstrates that LEM is more effective than the
other two Riemannian metrics in the evaluation. The results in
Table I also show that most of the kernel learning (Category?2)
and dimensionality reduction (Category3) methods improve
the accuracy of the baselines: AIM, Stein and LEM. This
demonstrates that learning discriminative SPD features in these
methods is beneficial to visual recognition tasks.

Compared with the state-of-the-art kernel learning based
methods CDL and RSR, the dimensionality reduction based
methods LEML and SPDML perform worse in the face recog-
nition task. In contrast, the proposed SPDSL improves LEML
and SPDML by approximately 2% and 7%, respectively,

(d + 1)-dimensional SPD matrix as |:
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TABLE I
AVERAGE RANK-1 FACE RECOGNITION RATES (%) WITH THE STANDARD DEVIATION OF THE THREE CATEGORIES OF
COMPETING METHODS, INCLUDING THE PROPOSED SPDSL, ON THE YTC DATABASE
Category1 AIM Stein LEM
Accuracy 62.85 &+ 3.46 61.46 £+ 3.52 63.91 £ 3.25
Category2 CDL [9] RSR [3] LEK-Kp,, [45] LEK-ke, [45] LEK-rq4 [45]
Accuracy 72.67 + 2.47 7277 + 2.69 61.85 £ 3.24 62.17 £ 3.52 56.30 £ 3.62
Category3 LEML [29] SPDML-AIM [5] SPDML-Stein [5]
Accuracy 70.53 £+ 2.95 64.66 + 2.92 61.57 £ 3.43
The proposed | SPDSL-AIM* SPDSL-Stein* SPDSL-LEM* SPDSL-AIM SPDSL-Stein ~ SPDSL-LEM
Accuracy 64.27 + 2.84 62.31 £ 3.48 69.32 £+ 2.04 71.60 & 2.45 71.03 £ 239  72.29 £+ 1.58
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Fig. 4. Running time of the proposed SPDSL-LEM on the YTC dataset

Fig. 3. Recognition accuracy of the proposed SPDSL-LEM on the YTC
dataset for varying values of vy, (i.e., different sparse degrees of the involved
kernel matrix k(W)).

and achieves comparable performance with CDL and RSR.
By comparison with SPDML, the performances of the adaption
of our proposed SPD similarity learning framework SPDSL-
AIM* and SPDSL-Stein™ are close to those of SPDML-AIM
and SPDML-Stein. These results indicate that the former
solution can be approximated by the latter solution when the
involved Riemannian metric is affine invariant. Nevertheless,
after using the proposed similarity learning technique, both
SPDSL-AIM and SPDSL-Stein can clearly outperform the
SPDML method. In addition, our SPDSL method can address
cases where the SPD manifold is equipped with the non-affine
Riemannian metric LEM, and we can observe that SPDSL-
LEM* and SPDSL-LEM achieve higher accuracies in most
cases. The big improvement of the proposed SPDSL over the
adapted SPDSL* stems from the proposed similarity learning
technique, which can learn more robust representations over
the original SPD data of the YTC database.

Additionally, we study the effectiveness of the proposed
SPDSL when varying its key parameter vp. As shown in
Fig.3, we present the behavior of the sparse (non PD) kernel
cases on the YTC database for different values of v, in the
interval [1, 8] and the values of 20 and 100 while fixing the
parameter v,, = 3. When k(W) achieves a full kernel matrix,
the performance reaches 72.57%, which is close to the highest
performance (72.29%) reached in the sparse kernel matrix
cases (see Fig.3).

The efficiency of the proposed SPDSL technique is also
studied. As shown in Fig.4, the running time is the average
training time of each iteration of the optimization algorithm,
which typically iterates 50 times. Specifically, we perform the

for varying values of v (i.e., different sparse degrees of the involved kernel
matrix k(W)).

-0.45
c 05
Rel
g
3 -0.55
[
=
o -0.6
@
g
-0.65
07 ‘ . : T
0 10 20 30 40 50
Iteration number
Fig. 5. Convergence behavior of the generalized RCG algorithm for the

proposed SPDSL-LEM in 10 random testings of the YTC dataset with the
parameter vy = 2.

test on the YTC dataset and employ an Intel(R) Core(TM)
i5-2400 (3.10GHz) PC. As the value of v, increases, the
running time increases substantially, especially when k(W)
is full, with a running time of approximately 13,975 seconds
(i.e., approximately 30 times that of the case where v, = 2 at
each iteration, and extremely expensive when the algorithm
iterates 50 times) on YTC. Hence, when huge datasets are
involved, the sparse kernel case scales much better than the
full (PD) kernel case with very slight gain/loss of accuracy.

We also investigate the convergence behavior of the
exploited RCG algorithm for our SPDSL approach. As seen
from the results in Fig.5, the optimization algorithm exploited
on the PSD manifold converges to a favorable solution after
several tens of iterations.
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Fig. 7.

Hopping action from the HDMOS Motion Capture database [49].

B. Material Categorization

For the task of material categorization, we conduct experi-
ments on the UIUC material dataset [47]. This dataset includes
18 subcategories of materials from four general categories:
bark, fabric, construction materials, and outer coat of animals.
Each subcategory contains 12 images taken at different scales.
Several samples from this database are shown in Fig.6.

Region covariance matrices (RCMs) [1] and SIFT fea-
tures [48] have been shown to be robust and discrimina-
tive for material categorization [47]. As in [5], we extract
RCMs of size 128 x 128 using 128-dimensional SIFT features
from grayscale images. Specifically, we resize each image
to 400 x 400 and compute the dense SIFT descriptors on
a grid with 4-pixel spacing (each patch size is 16x16, the
number of angles is 8, and the number of bins is 4). One
128-dimensional SIFT feature is thus yielded in each grid
point. For the dimensionality reduction methods, the dimen-
sions of the target manifolds are all set to 40.

Following [5], we randomly select half of the images from
each subcategory of the UIUC dataset as training data, and the
remaining images are used as the testing data. The evaluation
process is conducted 10 times in our experiment.

In Table I, for the competing methods, we report the average
accuracies and the standard deviations of 10 random testings
on the UIUC dataset. As concluded in the last evaluation, the
proposed dimensionality reduction technique SPDSL improves
the most-related method SPDML by 2%-4% and achieves
comparable performance to the state-of-the-art methods.
Compared to the last evaluation on the YTC database, the
gains of SPDSL over SPDSL* are small, possibly because
the UIUC dataset does contain large SPD data for each
class, which reduces the discriminant power of the proposed
similarity learning technique.

C. Action Recognition

To address the problem of human action recognition, we
make use of the HDMOS motion capture database [49].
As shown in Fig.7, the dataset contains 2337 sequences of
130 motion classes, e.g.,‘clap above head’, ‘lie down floor’,
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‘rotate arms’ and ‘throw basket ball’, in 10 to 50 realizations
executed by various actors.

The 3D locations of 31 joints of the subjects are provided
over time, acquired at 120 frames per second. Following the
previous works [5], [6], we represent an action of a K-joints
skeleton observed over m frames by its joint covariance
descriptor. This descriptor is an SPD matrix of size 3K x 3K,
which is computed using the second-order statistics of
93-dimensional vectors concatenating the 3D coordinates of
the 31 joints in each frame.

Similar to the evaluation protocol for the UIUC dataset,
we conduct random evaluations 10 times, in which half of
the sequences (approximately 1100 sequences) are randomly
selected for training data, and the rest are used for testing.
On the HDMOS5 database, [5] only used 14 motion classes
for evaluation while we consider 130 action classes. Thus,
our reported recognition rates are slightly lower than those
published in [5].

Table III summarizes the performances of the algorithms
on the HDMOS5 dataset. In the evaluation, the dimensions of
resulting manifolds achieved by the dimensionality reduction
methods are all set to 30. In contrast to the results in the last
two evaluations, CDL and RSR behave worse than the other
methods because the testing and training data of the HDMOS5
database are more diverse. In this case, the kernel learning
methods tend to overfit the training data and perform worse on
the distinct testing data. The proposed SPDSL again improves
the existing dimensionality reduction methods LEML and
SPDML by 1%-3% and achieves state-of-the-art performance
on the HDMOS5 database.

D. Discussion

In contrast to existing kernel learning based SPD discrim-
inant analysis methods, such as CDL and RSR, our SPDSL
is proposed for dimensionality reduction on SPD manifolds.
In theory, our method overcomes the general drawbacks of
these kernel learning methods, which are limited by the
requirement of Mercer kernels and the high complexity that
scales with the square of the training data size.

While our SPDSL and the existing SPDML and LEML are
all designed for dimensionality reduction on SPD manifolds,
there are some differences between them as follows.

First, compared with the related manifold learning method
SPDML, our SPDSL framework proposes a more general
solution and a more favorable objective function. This point
is validated by the three evaluations. As shown in Table I,
Table II and Table III, there are two key conclusions from the
three visual recognition tasks:

a) With respect to the proposed new solution, the main
benefits result from enlarging the search domain and enabling
the use of non-affine-invariant metrics (e.g., LEM). While
SPDSL* for the affine-invariant metrics AIM and Stein slightly
improves SPDML (this may depend on the data), the gains of
SPDSL*-LEM over the AIM and Stein cases are relatively
obvious, i.e., 1.65%, 2.15%, and 6.21% on average for the
three datasets.

b) The proposed objective function (working for similarity
regression) is quite different from that (working for graph
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TABLE II

AVERAGE RECOGNITION ACCURACIES (%) AND STANDARD DEVIATIONS OF THE THREE CATEGORIES OF COMPETING METHODS,
INCLUDING THE PROPOSED SPDSL, ON THE UIUC DATABASE

Category1 AIM Stein LEM
Accuracy 46.30 £+ 2.90 42.87 +2.27 46.30 &+ 2.86
Category2 CDL [9] RSR [3] LEK-Kp,, [45] LEK-kKe, [45] LEK-rg4 [45]
Accuracy 54.91 + 4.72 5241 4+ 4.03 48.89 + 3.29 49.54 + 3.67  49.63 £ 3.03
Category3 LEML [29] SPDML-AIM [5] SPDML-Stein [5]
Accuracy 52.53 + 2.13 48.09 £+ 1.82 49.17 + 2.37
The proposed | SPDSL-AIM* SPDSL-Stein* SPDSL-LEM* SPDSL-AIM SPDSL-Stein ~ SPDSL-LEM
Accuracy 50.00 £ 3.60 49.35 4+ 2.47 50.28 £ 3.78 5231 £+ 3.55 5157 £4.16  52.13 £ 3.49
TABLE III

AVERAGE RECOGNITION ACCURACIES (%) AND STANDARD DEVIATIONS OF THE THREE CATEGORIES OF COMPETING METHODS,
INCLUDING THE PROPOSED SPDSL, ON THE HDMO05 DATABASE

Category AIM Stein LEM
Accuracy 4270 £ 1.74 42.13 £ 2.63 4398 £ 2.13
Category?2 CDL [9] RSR [3] LEK-kp,, [45] LEK-ke,, [45] LEK-k4 [45]
Accuracy 41.74 £1.92 41.12 £2.53 47.22 £ 1.62 46.87 £ 1.72  48.72 + 3.00
Category3 LEML [29] SPDML-AIM [5]  SPDML-Stein [5]
Accuracy 46.87 £ 2.19 47.25 £2.78 46.21 £ 2.65
The proposed | SPDSL-AIM* SPDSL-Stein* SPDSL-LEM* SPDSL-AIM SPDSL-Stein ~ SPDSL-LEM
Accuracy 47.93 £ 2.62 46.35 £ 2.45 48.88 £ 3.18 48.09 £249  49.02 £ 293 49.13 £+ 2.74

embedding) used in [5]. While it is difficult to theoretically
prove the gains, we have empirically studied its superiority in
the above evaluations. When comparing SPDSL with SPDSL*,
the improvements are 2.13%, 1.03%, and 6.34% on average
for the three evaluated databases.

Second, in contrast to LEML, which focuses on metric
learning, our SPDSL learns discriminative similarities on SPD
manifolds. Moreover, while LEML performs metric learning
on the tangent space of SPD manifolds, the proposed SPDSL
learns similarity directly on the SPD manifolds. Intuitively, the
proposed SPDSL learning scheme more faithfully respects the
Riemannian geometry of the data space and therefore is able
to learn more appropriate SPD features for visual classifica-
tion tasks. The evaluations on the three used databases have
demonstrated some improvements of the proposed SPDSL
over LEML.

V. CONCLUSIONS

We have proposed a geometry-aware SPD similarity learn-
ing (SPDSL) framework for more robust visual classification
tasks. Under this framework, by exploiting the Riemannian
geometry of PSD manifolds, we enable direct learning of the
manifold-manifold transformation matrix. To achieve discrim-
inant learning on the SPD features, this work devises a new
SPDSL technique for SPD manifolds. With the objective of
the proposed SPDSL, we derive an optimization algorithm on
PSD manifolds to pursue the transformation matrix. Extensive
evaluations demonstrate both the effectiveness and the effi-
ciency of our SPDSL on three challenging datasets.

For future work, research on the relationship between the
selected Riemannian metrics of PSD manifolds and SPD
manifolds would be interesting for the problem of super-
vised SPD similarity learning. Furthermore, if the designed
discriminant function on SPD features is neglected, learning

the transformation on SPD features for object sets is equal
to learning the projection on single object features. Thus,
we can follow [50] to extend this work to learn hierarchical
representations on object features by leveraging the current
powerful deep learning techniques.
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