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a b s t r a c t

Face recognition on large-scale video in the wild is becoming increasingly important due to the ubiquity
of video data captured by surveillance cameras, handheld devices, Internet uploads, and other sources.
By treating each video as one image set, set-based methods recently have made great success in the field
of video-based face recognition. In the wild world, videos often contain extremely complex data
variations and thus pose a big challenge of set modeling for set-based methods. In this paper, we
propose a novel Hybrid Euclidean-and-Riemannian Metric Learning (HERML) method to fuse multiple
statistics of image set. Specifically, we represent each image set simultaneously by mean, covariance
matrix and Gaussian distribution, which generally complement each other in the aspect of set modeling.
However, it is not trivial to fuse them since mean, covariance matrix and Gaussian model typically lie in
multiple heterogeneous spaces equipped with Euclidean or Riemannian metric. Therefore, we first
implicitly map the original statistics into high dimensional Hilbert spaces by exploiting Euclidean and
Riemannian kernels. With a LogDet divergence based objective function, the hybrid kernels are then
fused by our hybrid metric learning framework, which can efficiently perform the fusing procedure on
large-scale videos. The proposed method is evaluated on four public and challenging large-scale video
face datasets. Extensive experimental results demonstrate that our method has a clear superiority over
the state-of-the-art set-based methods for large-scale video-based face recognition.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

With the increased usage of surveillance and personal video
capturing devices, enormous amount of video data is being captured
everyday. For instance, a large number of videos are being uploaded
every day on YouTube alone. Significant amount of data are also
captured by the ubiquitous surveillance and handheld cameras. One of
the most popular applications on the large-scale video data is video-
based face recognition, which commonly identifies a person by
matching his/her video sequence taken somewhere against the
surveillance videos recorded elsewhere.

In recent years, a large variety of methods have been suggested for
the problem of video-based face recognition. Broadly speaking, these
methods can be grouped into sequence-based ones and set-based
ones [1]. The former methods (e.g. [2–6]) exploit the temporal or
dynamic information of the faces in the video, while the latter ones
(e.g. [7–11]) represent videos as image sets of the separated video
frames, without using the temporal information. In this paper, we
focus on the set-based methods due to their less assumption on face
video sequence, high-efficiency on large-scale video data as well as

their state-of-the-art achievements on the problem of recognizing
people in videos. Generally, existing set-based methods mainly focus
on the key issues of how to quantify the degree of match between two
image sets and how to learn discriminant function from training
image sets [8].

In the aspect of how to quantify the degree of match, set-based
methods can be broadly partitioned into sample-based methods
[10,12–16], subspace-based methods [7–9,17–20] and distribution-
based methods [21,22]. Sample-based methods compare sets based
on matching their sample-based statistics such as sample mean and
affine (convex) combination of samples. This kind of methods includes
Maximum Mean Discrepancy (MaxMD) [12], Affine (Convex) Hull
based Image Set Distance (AHISD, CHISD) [10] and Sparse Approxi-
mated Nearest Point (SANP) [13], etc. In contrast, subspace-based
methods typically apply subspace-based statistics to model sets and
classify them with given similarity function. For example, Mutual
Subspace Method (MSM) [7] represents sets as linear subspaces and
match them using canonical correlations [23]. The distribution-based
methods, e.g. Single Gaussian Model (SGM) [21] and Gaussian mixture
models (GMM) [22], model each set with distribution-based statistics
(i.e., Gaussian distribution), and then measure the similarity bet-
ween two distributions in terms of the Kullback–Leibler Divergence
(KLD) [24].
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In the real-world scenario, video sequences are very likely to cover
large variations in a subject's appearance due to camera pose changes,
non-rigid deformations, and different illumination conditions. Therefore,
data in videos are often of arbitrary distribution, whichmay cause single
type of set model fail to faithfully characterize the set data structure. As
shown in Fig. 1(a) and (b), the sample mean encodes the position
information of the observed samples by averaging them, while the
sample covariance matrix captures the tight variation modes of the
observed samples by computing the variance between the involved
samples and the population mean. Obviously, using either the sample
mean (i.e., the position) or the covariance matrix (i.e., the variation) of
set data separately can only characterize the set data from one side of
the coin. To handle this problem, Gaussian model is commonly
employed to simultaneously represent the position and the variation
of data samples by estimating their mean and covariance matrix. As
studied in [21,22,25], the observation covariance matrix in Gaussian
model is typically a maximum-likelihood estimation from the sample
covariance matrix, and thus can more loosely encode the variation of
the data (see Fig. 1(c)). However, Gaussian model assumes the data in
each set follow Gaussian distribution, which however cannot always be
satisfied in real-world applications. Consequently, if the data follow
normal distribution strictly, Gaussian model individually can character-
ize the set data structure. When the data is of non-normal distribution,
the fusion of sample mean and sample covariance would be a better
choice to represent each set. To cover all possible cases, in this paper, we
combine three such statistics to model the sets from video sequences
for more robustness.

Another important problem in set-based methods is how to learn
discriminant function from training image sets. The first kind of
methods [8,16,18,20] is to learn the discriminant function in Euclidean
space. For instance, Set-to-Set Distance Metric Learning (SSDML) [16]
learns a proper metric between pairs of single vectors in Euclidean
space to get more accurate set-to-set affine hull based distance for
classification. Localized Multi-Kernel Metric Learning (LMKML) [20]
treats three order statistics of each set as single vectors in Euclidean
spaces and attempts to learn one metric for them by embedding
Euclidean spaces into Hilbert spaces. However, the higher order
statistics they used such as the tensors typically lie in non-Euclidean
space, which does not adhere to Euclidean geometry. Therefore, in this
method, applying the kernel function induced by Euclidean metric to
the higher order statistics does not always preserve the original set
data structure. In contrast, the second kind of learning methods
[17,19,26] treat each subspace-based statistics as a point in a specific
non-Euclidean space, and perform discriminant function learning in
the same space. For example, Grassmann Discriminant Analysis (GDA)

[17] and Covariance Discriminative Learning (CDL) [19] represent each
linear subspace or covariance matrix as a point on a specific type of
Riemannian manifolds and learn discriminant functions on those
manifolds.

In this paper, we propose a novel hybrid metric learning app-
roach to combine multiple statistics on set modeling for more robust
video face recognition in the wild. Specifically, we model each set by
simultaneously fusing sample mean, covariance matrix and Gaussian
distribution due to their complementary properties especially in the
real-world settings as discussed above. However, combining these
multiple statistics is not an easy job because they lie in multiple
heterogeneous spaces: the mean is a d-dimension vector lying in
Euclidean space Rd. As studied in [27–29], the nonsingular covariance
matrix is regarded as a Symmetric Positive Definite (SPD) matrix
residing on a Symd

þ manifold. In comparison, the space of Gaussian
distribution can be embedded into another Riemannian manifold
Symdþ1

þ by employing information geometry [30,31]. In such hetero-
geneous spaces, inspired by our previous work [32], we first exploit
classical Euclidean and Riemmannian metrics to define Euclidean and
Riemannian kernels, employing which the heterogeneous statistics
are implicitly mapped into high dimension Hilbert spaces. Then, our
method jointly learns multiple Mahalanobis matrices to fuse the
hybrid Euclidean and Riemannian kernels in a unified framework for
more robust video-based face recognition.

In fact, this work is an extension of our previous work [33]. The
differences between this work and the conference paper are as
follows: (1) this paper extends the Single Gaussian Model (SGM) in
the conference version to Gaussian Mixture Model (GMM), which
is essentially a general version of SGM, for modeling the Gaussian
distribution. (2) Furthermore, we exploit a novel kernel functions
for GMM in the Hilbert space embedding to facilitate fusing of our
employed statistics in our hybrid metric learning framework.
(3) Besides face identification task in the conference version, we
evaluate the proposed method in video face verification task by
conducting extensive experiments on two public and very challen-
ging large-scale video face datasets: YouTube Face [34] and Point-
and-Shoot Face Recognition Challenge [35]. In addition, we also
report results of the extended method and present the perfor-
mances of its each component on all datasets. In summary, there
are three main contributions in this work:

(1) We represent the image set (one video) simultaneously by
three statistics, i.e., sample mean, sample covariance matrix
and Gaussian model, and investigate their complementary
properties for more robust video-based face recognition.

Fig. 1. Illustration of different roles of sample mean, sample covariance matrix and Gaussian model when representing one set. Here, the squares and the circles
denote data samples respectively from two different sets. In (a), sample mean mi=mj characterizes position of one set. In (b), different directions μ1i ; μ
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(2) To alleviate the heterogeneity with the other two spaces of
mean (i.e., Euclidean space) and covariance matrix (i.e., SPD
manifold), we embed the space of Gaussian distribution,
which has been commonly studied within the context of
statistical manifold in previous literatures, into another spe-
cific SPD manifold by exploiting the information theory [31].

(3) To fuse the complementary but heterogeneous statistics, we
develop a hybrid metric learning framework to jointly learn
three different Mahalanobis matrices respectively in three
kernel Hilbert spaces for these statistics. While commonly
used kernel functions are employed for mean and covariance
matrix, we propose a novel kernel function for Gaussian model
by leveraging KL divergence-based kernel approximation the-
ory [36] and the Riemannian geometry of SPD manifold.

The rest of the paper is organized as follows. Section 2 reviews
the related work including Information-Theoretic Metric Learning
and Multiple Kernel Learning. Section 3 details the proposed
Hybrid Euclidean-and-Riemannian Metric Learning (HERML)
method to fuse multiple statistics of image sets for more robust
video-based face recognition. Section 4 evaluates our proposed
method and the state-of-the-art set-based methods on both video-
based face identification and video-based face verification,
followed by conclusions in Section 5.

2. Background

To learn the hybrid metrics, our new proposed method exploits
the Burg divergence based objective function which are employed
in Information-Theoretic Metric Learning method [37]. Therefore,
in this section, we first introduce the Information-Theoretic Metric
Learning method and its kernelized version. Then, since our
formulation is to fuse multiple kernels to combine different
statistics of image sets, we review the conventional Multiple
Kernel Learning methods [20,38–43], which often fuse multiple
kernels derived from homogeneous Euclidean spaces with differ-
ent dimensionalities.

2.1. Information-theoretic metric learning

Information-Theoretic Metric Learning (ITML) [37] method
formulates the problem of metric learning as a particular Bregman
optimization, which aims to minimize the LogDet divergence
subject to linear constraints:

min
A≽0;ξ

DℓdðA;A0ÞþγDℓdðdiagðξÞ;diagðξ0ÞÞ

s:t: trðAðxi�xjÞðxi�xjÞT Þrξij; ði; jÞAS

trðAðxi�xjÞðxi�xjÞT ÞZξij; ði; jÞAD ð1Þ

where A;A0ARd�d, DℓdðA;A0Þ ¼ trðAA�1
0 Þ� logdetðAA�1

0 Þ�d, d is
the dimensionality of the data. ði; jÞASðDÞ indicates the pair of
samples xi; xj is in similar (dissimilar) class. ξ is a vector of slack
variables and is initialized to ξ0, whose components are equal to
an upper bound of distances for similarity constraints and a lower
bound of distances for dissimilarity constraints.

Meanwhile, ITML method can be extended to a kernel learning
one. Let K0 denote the initial kernel matrix, i.e., K0ði; jÞ ¼
ϕðxiÞTA0ϕðxjÞ, where ϕ is an implicit mapping from the original
space to a high dimensional Hilbert space. Note that the Euclidean
distance in kernel space may be written as Kði; iÞþ
Kðj; jÞ�2Kði; jÞ ¼ trðKðei�ejÞðei�ejÞT Þ, where Kði; jÞ ¼ϕðxiÞTAϕðxjÞ
is the learned kernel matrix, A represents an operator in the
Hilbert space, whose size can be potentially infinite, and ei is the
i-th canonical basis vector. Then the kernelized version of ITML

can be formulated as

min
K≽0;ξ

DℓdðK ;K0ÞþγDℓdðdiagðξÞ;diagðξ0ÞÞ

s:t: trðKðei�ejÞðei�ejÞT Þrξij; ði; jÞAS

trðKðei�ejÞðei�ejÞT ÞZξij; ði; jÞAD ð2Þ

2.2. Multiple kernel learning

The Multiple Kernel Learning (MKL) refers to the process of
learning a kernel machine with multiple kernel functions or kernel
matrices. In other word, the existing MKL algorithms use different
learning methods for determining the kernel combination func-
tion. Suppose we have a set of base kernel functions fκrgRr ¼ 1,
where R is the number of base kernels. An ensemble kernel
function κ is then defined by

κðxi; xjÞ ¼
XR
r ¼ 1

βrκrðxi; xjÞ; βrZ0 ð3Þ

Consequently, one often-used MKL model from binary class
data fðxi; yiA71ÞgNi ¼ 1 is formulated as

f ðxÞ ¼
XN
i ¼ 1

αiyiκðxi; xÞþb

¼
XN
i ¼ 1

αiyi
XR
r ¼ 1

βrκrðxi; xÞþb ð4Þ

Optimizing over both the coefficients fαigNi ¼ 1 and fβrg
R
r ¼ 1 is one

particular form of the MKL problems. Recent research efforts on MKL,
e.g. [20,38–43] have shown that learning the combination of multiple
kernels not only increases the accuracy but also enhances the
interpretability. As far as we know, most of the conventional MKL
methods learn the combinations of the kernel function derived from
themetric of multiple homogeneous Euclidean spaces or Riemannian
manifolds with different dimensionalities.

3. Proposed method

In this section, we first describe an overview of our proposed
approach for video face recognition. Then, we study multiple
statistics for set modeling, which lie in multiple heterogeneous
spaces, i.e., one Euclidean space and two different Riemannian
manifolds. Subsequently, we exploit the kernel functions for the
three statistics in the Hilbert space embedding and then present
the Hybrid Euclidean-and-Riemannian Metric Learning (HERML)
to fuse such statistics by learning multiple Mahalanobis matrices
respectively transforming the hybrid elements from different
spaces to a common Euclidean space. Finally, we give a discussion
about other related work.

3.1. Overview

This paper proposes a novel Hybrid Euclidean-and-Riemannian
Metric Learning (HERML) approach to fuse multiple statistics of
image sets for more robust video face recognition. As discussed in
the prior sections, simultaneously exploiting multiple statistics can
be expected to improve the performance of image set classifica-
tion. With this in mind, we represent each image set with multiple
statistics—mean, covariance matrix and Gaussian distribution. For
such different statistics, we study their spanned heterogeneous
spaces: one Euclidean space Rd and two Riemannian manifolds
Symd

þ , Symdþ1
þ respectively. Therefore, we then formulate the

problem as fusing features in three such heterogeneous spaces
spanned by our employed multiple statistics. To this end, we
exploit kernel functions for such statistics in their Hilbert space
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embeddings. Since classical MKL algorithms fail to take a small
number of kernels as their direct inputs to learn their combination
coefficients, we then present an efficient hybrid metric learning
framework to fuse the hybrid Euclidean-and-Riemannian features
alternatively, which aims to learn multiple distance metrics in the
corresponding Hilbert spaces. A conceptual illustration of our
approach is shown in Fig. 2.

3.2. Multiple statistics of image set

This part will describe the detailed modeling of our employed
multiple statistics, which are in one Euclidean space and two
different dimensional Riemannian manifolds respectively. Then,
we exploit Euclidean and Riemannian kernel functions to embed
their original spaces into high dimensional Hilbert space, which
facilitates the subsequent hybrid metric learning.

3.2.1. Multiple statistics modeling
Let ½x1; x2;…; xn� be the data matrix of an image set with

n samples, where xiARd denotes the i-th image sample with
d-dimensional feature representation. From a view of probability
theory and statistics, we model each set as the following three
statistics with different properties.

3.2.1.1. Sample mean. Given a set of samples characterized by certain
probability distribution, sample mean is often used to measure the
central tendency of the set of samples. Specifically, the meanm of one
set containing n samples shows the averaged position of one set in the
high dimensional space and is computed as

m¼ 1
n

Xn
i ¼ 1

xi ð5Þ

As is well known, the mean is a form of vector lying in
Euclidean space Rd, where d is the dimension of the samples.

3.2.1.2. Sample covariance matrix. With no assumption about the
data distribution, the sample covariance matrix models the
variation modes of the set data by computing the variation
between the involved samples and the population mean. Given

one set with n samples, the covariance matrix is calculated as

C ¼ 1
n�1

Xn
i ¼ 1

ðxi�mÞðxi�mÞT ð6Þ

As studied in [27,29], the covariance matrix resides on Riemannian
manifold Symd

þ .

3.2.1.3. Gaussian model. In probability theory, the Gaussian
distribution is a very commonly occurring probability distribution,
which simultaneously captures the mean and the variations of one set.
Specifically, we exploit the well-known Gaussian Mixture Model
(GMM) to represent the probability of one image set by employing
the classical Expectation-Maximization (EM) algorithm to estimate the
GMMs and Minimum Description Length (MDL) [44] criterion to
calculate the number of component Gaussians that best fit the data.
The estimated GMM on each image set can be written as

G¼
XM
i ¼ 1

wiN ðxj ~m i; ~C iÞ ð7Þ

where x is the feature vector of data samples, ~m i; ~C i are the estimated
first-order and second-order statistics, N ðxj ~mi; ~C iÞ denotes a k-
dimensional Gaussian component with prior probability wi, mean
vector ~m i and covariance matrix ~C i. Note that, when M¼1, GMM is
essentially a Single Gaussian Model (SGM), which is employed in the
conference version of this work.

Based on the information geometry [30,31] theory, we can embed
the space of Gaussian components in GMMs into a Riemannian
manifold Symdþ1

þ . In the field of information geometry, if the random
vector x follows N ð0; IÞ, then its affine transformation Qxþ ~m follows
N ð ~m; ~C Þ, where the observation covariance matrix ~C has a decom-
position ~C ¼QQ T ; jQ j40 (here, jQ j means the determinant of Q ),
and vice versa. Therefore, such a Gaussian model N ð ~m; ~C Þ can be
characterized by the affine transformation ð ~m;Q Þ. According to the
information geometry theory in [31], a d-dimensional Gaussian
component N ð ~m; ~C Þ can be embedded into Symdþ1

þ and thus is
uniquely represented by a ðdþ1Þ � ðdþ1Þ-dimensional SPD matrix P
as

N ð ~m; ~C Þ � P ¼ jQ j �2=ðdþ1Þ QQ T þ ~m ~mT ~m
~mT 1

" #
ð8Þ

For detailed theory on the embedding process refer to [31].

Fig. 2. Conceptual illustration of the proposed Hybrid Euclidean-and-Riemannian Metric Learning (HERML) framework for video face recognition. (a) We first model each
image set by its sample mean, covariance matrix and Gaussian distribution, which lie in (b) one Euclidean space Rd and two Riemannian manifolds Symd

þ , Symdþ1
þ

respectively. Finally, by further embedding such heterogeneous spaces into Hilbert spaces (c), the hybrid Euclidean/Riemannian elements are unified in a common subspace
(d) by learning multiple Mahalanobis matrices, which can be reduced to transformations from the Hilbert spaces.
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3.2.2. Hilbert space embedding for multiple statistics
3.2.2.1. For mean vectors. As a positive definite kernel, the linear
kernel has proven very effective in Euclidean space for kernel based
algorithms. It maps the data points to a high dimensional Hilbert space
for yielding a very rich representation. Specifically, for the points in the
Euclidean space, the Gaussian kernel can be expressed as

κmðmi;mjÞ ¼mT
i mj ð9Þ

whichmakes use of the Euclidean distance between two data points xi
and xj. In addition to the linear kernel, there are many other well-
studied kernels such as Gaussian Radial Basis Function (RBF) kernel
and polynomial kernel. Without loss of generality, in this paper, we
only exploit the linear kernel for the Hilbert embedding of mean
vectors in our proposed metric learning framework.

3.2.2.2. For covariance matrices. Each nonsingular covariance matrix
C is actually a SPD matrix. The three most widely used distance
measures of SPD matrices are the Affine-Invariant Distance (AID)
[27,45,46], the Log-Euclidean Distance (LED) [19,29,47] and the Stain
Divergence based Distance (SDD) [48–50]. As studied in [51], only AID
and LED yield true geodesic distances and only LED and SDD can
induce positive definite kernel. Therefore, in this work, we focus on
the LED, which is not only a true geodesic distance on Symþ but also
yields a positive definite kernel as studied in [19,51].

By exploiting the Lie group structure of Symþ , the LED for
Symþ manifold is derived under the operation C i � C j≔
expðlog ðC iÞþ log ðC jÞÞ for C i;C jASymþ , where expð�Þ and log ð�Þ
denote the common matrix exponential and logarithm operators.
Under the log-Euclidean framework, the geodesic distance
between C i and C j is then expressed by classical Euclidean
computations in the domain of matrix logarithms:

dðC i;C jÞ ¼ J log ðC iÞ� log ðC jÞJF ð10Þ
where J � JF denotes the matrix Frobenius form.

As studied in [19], a Riemannian kernel function on the Symþ
manifold can be derived by computing the corresponding inner
product in the space. So, we embed the space of covariance
matrices into Hilbert space by using this kind of Riemannian
kernel:

κCðC i;C jÞ ¼ trðlog ðC iÞ � log ðC jÞÞ ð11Þ

3.2.2.3. For Gaussian distributions. To embed the Gaussian
distribution into Hilbert space, Campbell et al. [52] reported a GMM-
supervector kernel based KL divergence, which is perhaps the most
widely used dissimilarity measure between two probability
distributions pa; pb:

Ψ KLðpi JpjÞ ¼
Z
Rn
piðxÞ log

piðxÞ
pjðxÞ

 !
dx ð12Þ

However, since the KL divergence dose not satisfy Mercer's
theorem [36], an approximation is considered, for the case of
GMM, by bounding the divergence with log-sum inequality:

Ψ KLðpi JpjÞr
XMa

a ¼ 1

XMb

b ¼ 1

Ψ KLðpai Jpbj Þ

¼
XMa

a ¼ 1

XMb

b ¼ 1

Ψ KLðωaf ð ~ma
i ;

~C
a
i ÞJωbf ð ~mb

j ;
~C
b
j ÞÞ

¼
XMa

a ¼ 1

XMb

b ¼ 1

ωaωbΨ KLðf ð ~ma
i ;

~C
a
i ÞJ f ð ~mb

j ;
~C
b
j ÞÞ ð13Þ

whereMa;Mb are the numbers of Gaussian components in the two
GMMs, pai ; p

b
j are the probability distributions of the corresponding

Gaussian components, wa;wb are their prior probabilities, Ψ KLð�Þ is

calculated by the canonical KL divergence. In this paper, since we
embed each Gaussian component into a Riemannian manifold
Symdþ1

þ (i.e., each Gaussian component can be reformulated as a
dþ1 dimensional SPD matrix P as computed in Eq. (8)), we
alternately exploit the Riemannian distance of pairs of Gaussian
components to calculateΨ KLð�Þ. So, by employing the LED metric of
SPD matrices, we formulate the corresponding kernel function in
the Hilbert Space Embedding of Gaussian Distributions as

κGðGi;GjÞ ¼
XMa

a ¼ 1

XMb

b ¼ 1

ωaωb trðlog ðPa
i Þ � log ðPa

j ÞÞ ð14Þ

where Pa
i ;P

a
j are the corresponding dþ1 dimensional SPD

matrices for the two involved Gaussian components.

3.3. Hybrid Euclidean-and-Riemannian metric learning

In this part, we will present the formulation of our proposed
Hybrid Euclidean-and-Riemannian Metric Learning method in
details. Then, we introduce the optimization of the proposed
method.

3.3.1. Formulation
Denote X ¼ ½X1;X2;…;XN � as the training set formed by N

image sets, where X i ¼ ½x1; x2;…; xni �ARni�d indicates the i-th
image set, 1r irN, and ni is the number of samples in this image
set. It is known that the kernel function is always defined by first
mapping the original features to a high dimension Hilbert space, i.
e., ϕ : Rd-F (or Symþ-F ), and then calculating the dot product
of high dimensional features Φi and Φj in the new space. Though
the mapping ϕ is usually implicit, we first consider it as an explicit
mapping for simplicity. Hence, we first use Φr

i as the high
dimensional feature of r-th statistic feature extracted from the
image set X i. Here, 1rrrR and R is the number of statistics being
used, which is 3 in the setting of our multiple statistics modeling.
Now, given a pair of training sets X i and X j with the r-th statistic
features Φr

i ;Φr
j , we define the distance metric as

dAr ðΦr
i ;Φr

j Þ ¼ trðArðΦr
i �Φr

j ÞðΦr
i �Φr

j ÞT Þ ð15Þ

where Ar is the learned Mahalanobis matrix for the r-th statistic in
the high dimensional Hilbert space.

As shown in Fig. 2, assuming the high dimensional features of
multiple statistics can be mapped to a common space, we can
jointly optimize multiple Mahalanobis matrices Ar ðr¼ 1;…;RÞ,
which can be reduced to multiple transformations respectively
mapping the multiple statistics from the corresponding Hilbert
spaces to the common space. To learn these Mahalanobis matrices,
we attempt to maximize inter-class variations and minimize the
intra-class variations with the regularizer of the LogDet diver-
gence, which usually prevents overfitting due to the small training
set and high model complexity. In addition, as stated in [37], the
LogDet divergence forces the learned Mahalanobis matrices to be
close to an initial Mahalanobis matrix and keep symmetric
positive definite during the optimization. The objective function
for our multiple metric learning problem is formulated as

min
A1≽0;…;AR≽0;ξ

1
R

XR
r ¼ 1

DℓdðAr ;A0ÞþγDℓdðdiagðξÞ;diagðξ0ÞÞ;

s:t:
δij

R

XR
r ¼ 1

dAr ðΦr
i ;Φr

j Þrξij; 8ði; jÞ ð16Þ

where dAr ðΦr
i ;Φr

j Þ is obtained in Eq. (15) and ξ is initialized as ξ0,
which is a vector with each element equal to δijρ�ζτ, ρ is the
threshold for distance comparison, τ is the margin, and ζ is the
tuning scale of the margin. Another variable δij ¼ 1 if the pair of
samples come from the same class, otherwise δij ¼ �1. Since each

Z. Huang et al. / Pattern Recognition 48 (2015) 3113–3124 3117



Mahalanobis matrix Ar is symmetric and positive semi-definite,
we can seek a non-square matrix W r ¼ ½wr

1;…;wr
dr
� by calculating

the matrix square root Ar ¼W rWT
r .

In general, because the form of ϕr is usually implicit, it is hard or
even impossible to compute the distance dAr ðΦr

i ;Φr
j Þ in Eq. (15)

directly in the Hilbert space. Hence, we use the kernel trick method
[53] by expressing the basis wr

k as a linear combination of all the
training samples in the mapped space as

wr
k ¼

XN
j ¼ 1

uk
jΦr

j ð17Þ

where uk
j are the expansion coefficients. Hence,

XR
r ¼ 1

ðwr
kÞTΦr

i ¼
XR
r ¼ 1

XN
j ¼ 1

uk
j ðΦr

j ÞTΦr
i ¼

XR
r ¼ 1

ðukÞTKr
�i ð18Þ

where uk is an N � 1 column vector and its j-th entry is uk
j , and Kr

�i is
the i-th column of the r-th kernel matrix K r . Here Kr is an N � N
kernel matrix, calculated from the r-th statistic feature using the
Euclidean kernel functions and Riemannian kernel functions respec-
tively in Eqs. (9), (11), and (14) for different set statistic features. If we
denote Mahalanobis matrices as Br ¼UrUT

r for 1rrrR, then Eq. (16)
can be rewritten as

min
B1≽0;…;BR≽0;ξ

1
R

XR
r ¼ 1

DℓdðBr ;B0ÞþγDℓdðdiagðξÞ;diagðξ0ÞÞ;

s:t:
δij

R

XR
r ¼ 1

dBr ðKr
�i;K

r
�jÞrξij; 8ði; jÞ ð19Þ

where dBr ðKr
�i;K

r
�jÞ indicates the distance between the i-th and j-th

samples under the learned metric Br for the r-th statistic mapping in
the Hilbert space:

dBr ðKr
�i;K

r
�jÞ ¼ trðBrðK r

�i�Kr
�jÞðKr

�i�Kr
�jÞT Þ ð20Þ

The objective function of our proposed HERML framework in
Eq. (19) simultaneously learns three Mahalanobis matrices Bn

r ðr¼
1;…;3Þ, while the kernel version of ITML learns a single kernel
matrix Kn (see Eq. (2)). Compared with traditional MKL methods
that typically learn the combination coefficients for fusing a large
number of basic homogeneous kernels, our proposed HERML
algorithm alternately learns multiple Mahalanobis matrices for
combining a small number of hybrid Euclidean/Riemannian ker-
nels. For more discussions about the differences of the proposed
HERML from ITML and MKL refer to Section 3.4.

3.3.2. Optimization
To solve the problem in Eq. (19), we adopt the cyclic Bregman

projection method [54–56], which is to choose one constraint per
iteration, and perform a projection so that the current solution satisfies
the chosen constraint. In the case of inequality constraints, appropriate
corrections of Br and ξij are also enforced. This process is then
repeated by cycling through the constraints. The method of cyclic
Bregman projections is able to converge to the globally optimal
solution. Refer to [54–56] for more details. The updating rules for
our proposed method are shown in the following proposition:

Proposition 1. Given the solution Bt
r for r¼ 1;…;R at the t-th

iteration, we update Br and the corresponding ξij as follows:

Btþ1
r ¼ Bt

rþβrBrðKr
�i�Kr

�jÞðKr
�i�Kr

�jÞTBr ; ðaÞ

ξtþ1
ij ¼ γξtij

γþδijαξ
t
ij

; ðbÞ

8>>><
>>>:

ð21Þ

where βr ¼ δijα=ð1�δijαdBtr ðK
r
�i;K

r
�jÞÞ and α can be solved by

δij

R

XR
r ¼ 1

dBt
r
ðKr

�i;K
r
�jÞ

1�δijαdBtr ðK
r
�i;K

r
�jÞ
� γξtij
γþδijαξ

t
ij

¼ 0: ð22Þ

Proof. Based on the cyclic projection method [54–56], we for-
mulate the Lagrangian form of Eq. (19) and set the gradients to

zero w.r.t Btþ1
r , ξtþ1

ij and α to get the following update equations:

∇DðBtþ1
r Þ ¼∇DðBt

rÞþδijαðK r
�i�K r

�jÞðKr
�i�Kr

�jÞT ; ðaÞ

∇Dðξtþ1
ij Þ ¼∇DðξtijÞ�

δijα
γ

; ðbÞ

δij

R

XR
r ¼ 1

trðBtþ1
r ðKr

�i�K r
�jÞðK r

�i�Kr
�jÞT Þ ¼ ξtþ1

ij : ðcÞ

8>>>>>>><
>>>>>>>:

ð23Þ

Then, we can derive Eqs. (21a) and (21b) from Eqs. (23a) and
(23b), respectively. Substituting Eqs. (21a) and (21b) into Eq. (23c),
we obtain Eq. (22) related to α. For an inequality constraint in
Eq. (19), we use ηijZ0 as the dual variable of α. To maintain non-
negativity of the dual variable (which is necessary for satisfying
the KKT conditions), following the work [56], we solve Eq. (19) by
updating α as

α’minðα;ηijÞ; ηij’ηij�α ð24Þ

The resulting algorithm is given as Algorithm 1. The inputs to
the algorithm are the starting Mahalanobis matrices B1;…;BR, the
constraint data, the slack parameter γ, distance threshold ρ,
margin parameter τ and tuning scale ζ. The main time cost is to
update Btþ1

r in Step 5, which is OðRN2Þ (N is the number of
samples) for each constraint projection. Therefore, the total time
cost is OðLRN2Þ where L is the total number of the updating in Step
5 executed by the following algorithm.

Algorithm 1. Hybrid Euclidean-and-Riemannian Metric Learning.

Input: Training pairs fðK r
�i;K

r
�jÞ;δijg, and slack parameter γ, input

Mahalanobis matrix B0, distance thresholds ρ, margin

parameter τ and tuning scale ζ
1. t’1, B1

r’B0 for r¼ 1;…;R, ηij’0, ξij’δijρ�ζτ; 8ði; jÞ
2. Repeat
3. Pick a constraint (i,j) and compute the distances dBtr ðK

r
�i;K

r
�jÞÞ

for r¼ 1;…;R by using Eq. (20).
4. Solve α in Eq. (22) and update α by using Eq. (24).

5. Update Btþ1
r by using Eq. (21a) for r¼ 1;…;R.

6. Update ξtþ1
ij by using Eq. (21b).

7. Until convergence
Output: Mahalanobis matrices B1;…;BR.

3.4. Discussion about related work

The idea of the proposed hybrid metric learning framework is
inspired by our previous work in [32] which aims to learn the
cross-space (i.e., Euclidean space to Riemannian manifold) dis-
tance metric for matching Euclidean points against Riemannian
elements. Different from [32], this presented work attempts to
simultaneously learn multiple distance metrics (each working in a
single space) respectively for Euclidean and Riemannian elements
under a hybrid metric fusion framework.

To solve our problem of hybrid metric learning, as ITML [37],
we employ the LogDet divergence based constraint which
has excellent ability to implicitly maintain the positive
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semidefiniteness (i.e., fix the rank) of the learned Mahalanobis
matrices for fusing the hybrid kernels in our proposed framework.

Although using the same constraint of LogDet divergence as
ITML [37], our proposed metric learning framework works in a
different way from ITML. ITML aims to learn a single Mahalanobis
matrix in a Euclidean space or to learn a kernel matrix in a Hilbert
space. In contrast, our method attempts to jointly learn multiple
Mahalanobis matrices in multiple Hilbert spaces for fusing hybrid
Euclidean and Riemannian data. In some sense, our method tends
to be a generalized version of ITML. When the type of kernel
function is linear and meanwhile the data lie in a single space, the
proposed framework naturally reduces to the original ITML. In
other words, ITML can be viewed as a special case of the proposed
HERML algorithm in this paper.

In addition, there exist several works [20,38–43] for Multiple
Kernel Learning (MKL) in the literature. While these works also
exploit multiple kernels, they mainly focus on fusing multiple
homogeneous Euclidean (or Riemannian) features. In contrast, our
method addresses the new problem of fusing heterogeneous
Euclidean and Riemannian features. In the sense of techniques,
most MKL methods aim to learn the combination coefficients to
fuse a lot of basic kernels, while our hybrid metric learning
algorithm HERML alternatively learns multiple Mahalanobis
matrices to fuse a small number of kernels (only 3 in our work).
Therefore, both the problem and technique of our method differ
from the existing MKL methods.

4. Experiments

In this section, we evaluate our proposed approach on four
large-scale video face datasets for both video face identification
and video face verification tasks. The following describes the
experimental results and our analysis in details.

4.1. Comparative methods and settings

We compare our proposed approach with three categories of
the state-of-the-art set-based methods as follows. Note that, we
add ITML to sample-based methods as it performs metric learning
on single samples/images, which can be considered as a kind of
sample-based statistics of image set here. Since ITML also has a
kernel version, we feed our proposed kernel function of Gaussian
distribution to it for additional comparison.

(1) Sample-based method: Maximum Mean Discrepancy (MaxMD)
[12], Affine (Convex) Hull based Image Set Distance (AHISD,
CHISD) [10], Set-to-Set Distance Metric Learning (SSDML) [16]
and Information Theoretic Metric Learning (ITML) [37].

(2) Subspace-based method: Mutual Subspace Method (MSM) [7],
Discriminant Canonical Correlations (DCC) [8], Manifold Dis-
criminant Analysis (MDA) [18], Grassmann Discriminant Ana-
lysis (GDA) [17], Covariance Discriminative Learning (CDL) [19]
and Localized Multi-Kernel Metric Learning (LMKML) [20].

(3) Distribution-based method: Single Gaussian Models (SGM) [21],
Gaussian Mixture Models (GMM) [22] and kernelized ITML
[37] with our DIS-based set model (DIS-ITML).

Except for SGM and GMM, the source codes of above methods
are provided by the original authors. Since the codes of SGM and
GMM are not publicly available, we carefully implemented them
using the code1 to generate Gaussian model(s). For fair compar-
ison, the important parameters of each method are empirically

tuned according to the recommendations in the original refer-
ences: For MaxMD, we use the edition of Bootstrap and set the
parameters α¼0.1, σ¼�1, the number of iteration to 5. For ITML,
we use the default parameters as the standard implementation.
For AHISD, CHISD and DCC, PCA is performed by preserving 95%
energy to learn the linear subspace and corresponding 10 max-
imum canonical correlations are used. For MDA, the parameters
are configured according to [18]. For GDA, the dimension of
Grassmannian manifold is set to 10. For CDL, since KPLS works
only when the gallery data is used for training, such setting
prevents KPLS from working in many cases. So, we use KDA for
discriminative learning and adopt the same setting as [19]. For
SSDML, we set λ1 ¼ 0:001; λ2 ¼ 0:5, numbers of positive and
negative pairs per set is set to 10 and 20. For LMKML, we use
median distance heuristic to tune the widths of Gaussian kernels.
For our method HERML,2 we set the parameters γ ¼ 1, ρ as the
mean distances, τ as the standard variations and the tuning range
of ζ is ½0:1;1�. In HERML, we first calculate three distances for each
pair of video samples under the learned Mahalanobis matrices Br

for the r-th statistics (see Eq. (20)) and then average the three
distances as the final distance for the involved sample pair. For
identification task, we identify the query videos using the NN
classifier based on the above distance calculation. For verification
task, with a given threshold, the calculated final distance is used
for verifying the associating video pair as the same or different
identity.

4.2. Evaluation on video face identification

4.2.1. Datasets
For video face recognition task, we use two public large-scale

video face datasets: YouTube Celebrities (YTC) [5] and COX [57].
The YTC is a quite challenging and widely used video face dataset.
It has 1910 video clips of 47 subjects collected from YouTube. Most
clips contain hundreds of frames, which are often of low resolu-
tion and highly compressed with noise and low quality. The COX is
a large-scale video dataset involving 1000 different subjects, each
of which has 3 videos captured by different camcorders. In each
video, there are around 25–175 frames of low resolution and low
quality, with blur, and captured under poor lighting. As shown in
Figs. 3 and 4, there are some examples on YTC and COX datasets.

In our experiments, For COX, we coarsely align all the faces and
normalize them to the same size based on the face bounding-box and
the eye positions provided by the original dataset providers. For YTC,
following the works [19,20,16], we used directly the detected face
regions without further alignment due to the low resolution of the
faces. More specifically, each face in YTC is resized to a 20�20 image
as [19,20] while the faces in COX are resized to 32�40. For all faces in
the two datasets, histogram equalization is implemented to eliminate
lighting effects. On the two video face datasets, we follow the same
protocol as the prior work [10,19,20], which conducted ten-fold cross
validation experiments, i.e., 10 randomly selected gallery/probe com-
binations. Finally, the average recognition rates of different methods
are reported. For YTC, in each fold, one person has 3 randomly chosen
image sets for the gallery and 6 for probes. Different from YTC, COX
dataset does also contain an additional independent training set [57],
where each subject has 3 videos. Since there are 3 independent testing
sets of videos in COX, each person has one video as the gallery and the
remaining two videos for two different probes, thus in total 6 groups
of testing need to be conducted.

1 https://engineering.purdue.edu/�bouman/software/cluster/.

2 The source code will be released on the website: http://vipl.ict.ac.cn/
resources/codes.
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4.2.2. Results and analysis
We present the rank-1 recognition results of comparative

methods on the two datasets in Table 1. Each reported rate is an
average recognition rate over the ten-fold trials. Note that, since
the multiple kernel learning method LMKML [20] is too time-
consuming to run in the setting of COX dataset, which is a large-
scale dataset, we alternately use 100 of 300 subject's videos for
training and 100 of 700 remaining subject's videos for testing.

Firstly, we are interested in the classification results of methods
with different degree of match. Here, we focus on the comparison
between those unsupervised methods MaxMD, AHISD, CHISD,
MSM, SGM, and GMM. On YTC and COX, the sample-based
methods (MaxMD, AHISD, and CHISD), the distribution-based
methods (SGM and GMM) and the subspace-based method
(MSM) are comparable in the term of recognition rate.

Secondly, we also care about which way to learn a discriminant
function is more effective. So, we compare the results of the
supervised methods SSDML, ITML, DCC, MDA, GDA, CDL. Of the three
datasets, GDA and CDL methods have clear advantage over SSDML,
ITML, DCC and MDA. This is because ITML performs the metric
learning and classification on single samples, which neglects the
specific data structure of sets. SSDML, DCC and MDA methods learn
the discriminant metrics in Euclidean space, whereas most of them
classify the sets in non-Euclidean spaces. In contrast, GDA and CDL
extract the subspace-based statistics in the Riemannian space and
match them in the same space, which is more favorable for the set
classification task [17].

Thirdly, we compare the state-of-the-art methods with our
approach and find that they are impressively outperformed by
ours on the two datasets. Several reasons are figured out as
following: In terms of set modeling, as stated in Section 1, our
combining of multiple complementary statistics can more robustly

model those sets of arbitrary distribution, large variation and small
size in the three datasets. In terms of discriminant function
learning, by encoding the heterogeneous structure of the space
of such statistics especially the non-Euclidean data structure of
covariance matrices and Gaussian models, our method jointly
learns hybrid metrics to fuse them for more discriminant classi-
fication. In comparison, the MKL method LMKML [20] simply
transforms both the covariance matrices and the third-order
tensors to vectors, which lie in Euclidean spaces. As a result, it
neglects the non-Euclidean geometrical structure of the covar-
iance matrices and third-order tensors. We argue that the under-
lying data structure and distributions in the learning stage will
probably lead to undesirable metrics. Thus, our proposed method
is more desirable to learn metrics for non-Euclidean data and has a
clear advantage over LMKML. In addition, the results also show
that our novel hybrid metric learning method has an impressive
superiority over the original ITML.

Fourthly, we also compare the discriminative power of different
basic set modelings (i.e., sample mean, sample covariance matrix
and Gaussian model) for video face recognition. For each statistic,
we performed our proposed method to train and classify sets with
NN classifier. Table 2 tabulates the classification rates of multiple
statistics. We can observe that the SGM/GMM achieves the best
recognition performance than other two statistics because it
jointly model the mean and the covariance matrix in a Gaussian
distribution. Additionally, the results of combining of mean and
covariance matrix sometimes are better than those of SGM/GMM
on COX-S2V. This is because the dataset may contain some sets not
strictly following Gaussian distribution. Since the multiple statis-
tics complement each other, the performance can be improved by
our proposed metric learning with all statistic models.

As shown in Table 1, compared with SGM method, the higher
performances of GMM method demonstrate that it is more
qualified to faithfully characterize the set structure. However,
from Table 2, we observe that, in our proposed framework, the
GMM statistics is outperformed by the SGM statistics in several
cases. This is possibly because, to allow sufficient flexibility and
avoid overfitting, GMM usually needs to tune an appropriate
number of components. Though we have done this in a prin-
cipled way according to the MDL [44] criterion, it is still difficult
to find the best parameter to fit real data with arbitrary
distribution. However, in practical applications, we still prefer

Fig. 3. Examples on YTC dataset.

Fig. 4. Examples on COX dataset.

Table 1
Average recognition rate (%) of different set-based methods on YouTube Celebrities
(YTC) and COX face datasets. Here, COX-ij represent the test using the i-th set of
videos as gallery and the j-th set of videos as probe. In each column of this table,
the bold values indicate the first three highest performances on the corresponding
database.

Method YTC COX-12 COX-13 COX-23 COX-21 COX-31 COX-32

MaxMD [12] 52.6 36.4 19.6 8.9 27.6 19.1 9.6
AHISD [10] 63.7 53.0 36.1 17.5 43.5 35.0 18.8
CHISD [10] 66.3 56.9 30.1 15.0 44.4 26.4 13.7
SSDML [16] 68.8 60.1 53.1 28.7 47.9 44.4 27.3
ITML [37] 65.3 50.9 46.0 35.6 39.6 37.1 34.8

MSM [7] 61.1 45.5 21.5 11.0 39.8 19.4 9.5
DCC [8] 64.8 62.5 66.1 50.6 56.1 64.8 45.2
MDA [18] 65.3 65.8 63.0 36.2 55.5 43.2 30.0
GDA [17] 65.9 68.6 77.7 71.6 66.0 76.1 74.8
CDL [19] 69.7 78.4 85.3 79.7 75.6 85.8 81.9
LMKML [20] 70.3 66.0 71.0 56.0 74.0 68.0 60.0

SGM [21] 52.0 26.7 14.3 12.4 26.0 19.0 10.3
GMM [22] 61.0 30.1 24.6 13.0 28.9 31.7 18.9
DIS-ITML [37] 68.4 47.9 48.9 36.1 43.1 35.6 33.6

HERML-SGM 74.6 94.9 96.9 94.0 92.0 96.4 95.3
HERML-GMM 73.3 95.1 96.3 94.2 92.3 95.4 94.5
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to the more general GMM modeling due to its stronger ability to
capture the data variations especially when they are with a
multi-model density.

Lastly, on the YouTube dataset, we compare the computational
complexities of different methods on an Intel(R) Core(TM) i7-3770
(3.40 GHz) PC. Table 3 lists the time cost for each method. The
presentation of training time is only required by discriminant
methods. Since ITML has to train and test on large number of
samples from sets and classify pairs of samples, it has high time
complexities. Except DCC and CDL, our method is much faster than
other methods especially the LMKML method. This is because
LMKML need to learn on very high dimensional Euclidean vectors
transformed from the covariance matrices and the third-order
tensors. In contrast, our HERML method work directly on covar-
iance matrices and the SPD model of Gaussian statistics, whose
sizes are much smaller than their vector forms.

4.3. Evaluation on video face verification

4.3.1. Datasets
For video face verification task, we conduct experiments on

two challenging large-scale datasets: YouTube Face (YTF) [34] and
Point-and-Shoot Face Recognition Challenge (PaSC) [35]. The YTF
[34] contains 3425 videos of 1595 different persons collected from
the YouTube website. There are large variations in pose, illumina-
tion, and expression in each video, and the average length of each
video clip is 181.3 frames. The PaSC [35] includes 2802 videos of
265 people carrying out simple actions. Every action was filmed by
two cameras: a high quality, 1920�1080 pixel, Panasonic camera
on a tripod and one of five alternative handheld video cameras.
The tripod-based Panasonic data serves as a control. The handheld
cameras have resolutions ranging from 640�480 up to
1280�720. As shown in Figs. 5 and 6, there are some examples
on YTF and PaSC datasets.

On YTF, we follow the standard evaluation protocol [34] and
test our method for unconstrained face verification with 5000
video pairs. These pairs are equally divided into 10 folds, and each
fold has 250 intra-personal pairs and 250 inter-personal pairs. The
experiment is performed in the restricted training setting. On

PaSC, there are two video face verification experiments: control-
to-control and handheld-to-handheld experiments. In both of the
two experiments, the target and query sigsets contain the same set
of videos. The task was to verify a claimed identity in the query
video by comparing with the associated target video. Since the
same 1401 videos served as both the target and query sets, ‘same
video’ comparisons were excluded.

For PaSC and YTF, we directly used face detection and positions
of eyes to rotate and crop each face image to a normal size.
Specifically, in our experiments, we directly crop the face images
according to the provided data and then resize them into 24�40
pixels for YTF as [42] while 64�80 pixels for PaSC. On YTF dataset,
we extract the raw intensity feature of resized video frames.
Compared with the YTF datasets, the PaSC dataset is so challen-
ging that using pixels intensity as feature performs too badly.
Therefore, we employed the state-of-the-art DCNN to learn fea-
tures on this dataset. Specifically, we employ the Caffe [58] to
extract the Deep Convolutional Neural Network (DCNN) feature of
the video frames. The DCNN model is pretrained on CFW [59], and
then fine-tuned on the data from the training sets of PaSC and COX
datasets.

4.3.2. Results and analysis
In the video face verification evaluation, we compare six

representative set-based methods, i.e., AHISD [10], CHISD [10],
SSDML [16], DCC [8], GDA [17] and CDL [19], due to their high
performances in the video face identification task. As LMKML [20]
are very time-consuming on large-scale video, we do not evaluate
it in this task. On YTF dataset, since DCC [8], GDA [17] and CDL [19]
were not specifically designed for face verification, we modify
them by constructing the within-class scatter matrix from intra-
class pairs and the between-class scatter matrix from inter-
class pairs.

Table 2
Average recognition rates (%) of separatively using mean, covariance matrix (Cov.)
and Gaussian model (SGM/GMM), combining mean and covariance matrix (Mean-
þCov.), fusing all of them (ALL) with our metric learning method on YouTube
Celebrities (YTC) and COX face datasets. Here, COX-ij indicates the test using the
i-th set of videos as gallery and the j-th set of videos as probe. Note that, ALL-SGM
and ALL-GMM mean fusing the first two statistics with SGM or GMM. In each
column of this table, the bold values indicate the first three highest performances
on the corresponding database.

Statistics YTC COX-12 COX-13 COX-23 COX-21 COX-31 COX-32

Mean 64.1 86.2 92.0 82.8 83.2 86.9 84.9
Cov. 70.2 88.8 93.6 90.3 86.4 94.0 93.1
SGM 73.5 92.8 94.7 92.2 89.0 94.7 94.4
GMM 72.3 93.1 94.3 92.5 90.0 93.3 93.7

MeanþCov. 71.6 93.1 95.2 93.1 91.2 95.2 95.0

ALL-SGM 74.6 94.9 96.9 94.0 92.0 96.4 95.3
ALL-GMM 73.3 95.1 96.3 94.2 92.3 95.4 94.5

Table 3
Computation time (seconds) of different methods on the YTC dataset for training
and testing (classification of one video).

Method MaxMD SSDML ITML DCC CDL LMKML SGM GMM HERML

Train N/A 433.3 2459.7 11.9 4.3 17511.2 N/A N/A 27.3
Test 0.1 2.6 0.5 0.1 0.1 247.1 0.4 1.9 0.1

Fig. 5. Examples on YTF dataset.

Fig. 6. Examples on PaSC dataset.
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In Table 4, we report mean accuracies plus standard deviations of
comparative methods on YTF dataset while listing their verification
rates at false accept rate (FAR)¼0.01 on PaSC dataset. Figs. 7–9 show
the corresponding ROC of these methods on YTF and PaSC. As can be
seen in these results, our method coupled with either SGM or GMM
outperforms the other set-based methods. Most performances of our
implemented set-based methods on YTF are lower than those
reported in [60], possibly because it used higher resolution of facial
images and more robust feature were used in their methods. We also
see that the result of GDA on YTF is much lower than other set-based
methods. This may be possible for that the published results of its
corresponding basic set-to-set distance (i.e., projection metric) are
also much lower than others in the original work [34], where the YTF
is released. On PaSC, we extract the state-of-the-art DCNN feature
and find that most of the comparative set-based methods signifi-
cantly outperform the published state-of-the-art method Eigen-PEP
[61], whose performance is 26% on the handheld experiment. As can
be seen, our method yields an impressive improvement of 20% above
the state-of-the-art result.

In the end, we also compare performances of separatively/
simultaneously using sample mean, sample covariance matrix and
Gaussian model in the video face identification task. Table 5 lists
the verification rates of our employed multiple statistics coupling
with our metric learning framework. On both datasets, the SGM/
GMM outperform other two statistics due to its jointly modeling of

mean and the covariance matrix in a Gaussian distribution. As the
multiple statistics complement each other, the performance can be
improved by fusing all statistic models in our proposed metric
learning framework.

5. Conclusions

In this paper, we proposed a novel set-based hybrid metric
learning method to fuse multiple statistics of image sets for more
robust large-scale video face recognition in the wild. Our con-
tributions lie in modeling multiple complementary statistics in
heterogeneous spaces and learning hybrid Euclidean-and-
Riemannian metrics to combine them. To our best knowledge,
the problem of hybrid metric learning across Euclidean and
Riemannian spaces has not been investigated before and we made
the first attempt to address this issue in this paper.

The extensive experiments on four large-scale datasets have
shown that our proposed method outperforms the state-of-the-art

Table 4
Verification rates (%) of different set-based methods on YouTube Face DB (YTF) and
PaSC face datasets. Note that, the reported rates on YTF are mean accuracies with
standard deviations, and those on PaSC are verification rates when false accept rate
is 0.01. In each column of this table, the bold values indicate the first three highest
performances on the corresponding database.

Method YTF PaSC—control PaSC—handheld

AHISD [10] 64.80 71.54 21.96 14.29
CHISD [10] 66.30 71.21 26.12 20.97
SSDML [16] 65.3871.86 29.19 22.89

DCC [8] 68.2872.21 38.87 37.53
GDA [17] 59.1471.98 41.88 43.25
CDL [19] 64.9472.38 42.62 42.97

HERML-SGM 75.1670.84 45.40 45.46
HERML-GMM 74.3671.53 46.61 46.23

Fig. 7. ROC for the video-to-video face verification experiment on YTF.

Fig. 8. ROC for the control video-to-video face verification experiment on PaSC.

Fig. 9. ROC for the handheld video-to-video face verification experiment on PaSC.
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set-based methods in both tasks of video face identification and
verification. The comparison of our employed statistics coupled
separately or jointly with our hybrid metric learning framework
demonstrates that they are complementary for each other to
improve the performance of face recognition when they are fused
together in the real-world setting. In terms of the efficiency,
compared with the existing multiple kernel learning method,
our proposed method is much more efficient to fuse multiple
hybrid kernels on the large-scale video data.

In the future, several possible directions of our proposed
method can be as follows. Firstly, in addition to the application
on video face recognition, our proposed method can also be
employed to other applications such as action recognition,
person re-identification and so on. Secondly, the significant
improvement by the state-of-the-art DCNN image feature indi-
cates that jointly learning image feature and image set feature
may be a very promising direction. Lastly, it would be also
interesting to explore other possible metric learning methods to
fuse multiple complement statistics or pursue more robust
statistics to model image sets with different structures in real-
world scenario.
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