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Abstract— Video question answering (VideoQA) is challenging
since it requires the model to extract and combine multi-level
visual concepts from local objects to global actions from complex
events for compositional reasoning. Existing works represent the
video with fixed-duration clip features that make the model
struggle in capturing the crucial concepts in multiple granu-
larities. To overcome this shortcoming, we propose to represent
the video with an Event Graph in a hierarchical structure
whose nodes correspond to visual concepts of different levels
(object, relation, scene and action) and edges indicate their
spatial-temporal relationships. We further propose a Hierarchical
Spatial-Temporal Transformer (HSTT) which takes nodes from
the graph as visual input to realize compositional reasoning
guided by the event graph. To fully exploit the spatial-temporal
context delivered from the graph structure, on the one hand,
we encode the nodes in the order of their semantic hierarchy
(depth) and occurrence time (breadth) with our improved graph
search algorithm; On the other hand, we introduce edge-guided
attention to combine the spatial-temporal context among nodes
according to their edge connections. HSTT then performs QA
by cross-modal interactions guaranteed by the hierarchical corre-
spondence between the multi-level event graph and the cross-level
question. Experiments on the recent challenging AGQA and
STAR datasets show that the proposed method clearly outper-
forms the existing VideoQA models by a large margin, including
those pre-trained with large-scale external data. Our code is
available at https://github.com/ByZ0e/HSTT.

Index Terms— VideoQA, video representation, transformer,
spatial-temporal reasoning, compositional reasoning.

I. INTRODUCTION

IN THE past decade, AI systems have been required to
reason about the static scenes (images) from basic objects

to more complex scenes [1], [2], [3], [4], [5]. Toward real-
world applications, what they need to face is a dynamic
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world with constant events happening around them. Com-
pared to the static scene simply composed of objects with
spatial interaction among them, the visual events in videos
comprise complicated spatial-temporal dependencies of multi-
granularity visual clues from local objects to global actions.
Accordingly, Video Question Answering (VideoQA), is much
more challenging for it requires the system to fulfill multi-step
reasoning across different understanding levels as shown in
Figure 1. Sometimes, the system needs to sort the actions
according to the changing process of local human-object
relation (like Q1), while sometimes it has to locate the specific
object that a person is interacting with during a certain period
(like Q2). To equip the model with such cross-level reasoning
ability, a hierarchical representation with clear spatial-temporal
relations for characterizing video content becomes the prereq-
uisite.

However, most of the existing VideoQA models follow
the tradition of broadly representing the video as single-level
(frame-level or clip-level) features [6], [7], [8], [9]. While
they have achieved promising results on relatively simple
questions, these methods often struggle when encountering
complex cross-level reasoning questions [10]. This limitation
is most likely caused by a lack of explicitly characterizing
the multi-level visual concepts in the video, which incurs
considerable difficulty for the model to uncover the visual
clues in different scales from such single-level unstructured
video representation.

Targeting this issue, we propose a hierarchical event graph
to clearly represent the spatial-temporal structure of the videos.
Motivated by the prior scene graphs [11], [12] and action
graphs [13], [14], [15], we construct a uniform four-level hier-
archical graph, including Object, Relation, Scene and
Action to roughly mimic the bottom-up visual understanding
process of our human-beings [16]. That is, we first determine
the interaction relationship between salient objects in a single
frame (i.e., object and relation level), then combine multiple
relationships to get an overall understanding of the static scene
(i.e., scene level), and finally recognize the dynamic actions
that the person is performing by continuously observing
frames during a time period (i.e., action level). We use graph
nodes to represent the above four levels of visual concepts
extracted from the video. Each node has its specific semantic
level, timestamp, and confidence score. Then we link them
with edges to indicate their spatial-temporal relationships.
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Fig. 1. VideoQA involves multi-step reasoning across four understanding levels (Object, Relation, Scene and Action) of the videos. The Scene
here denotes a static frame at time t serving as the connecting link between local and global visual elements. In the example on the left (Q1), the reasoning
route (black arrow) starts from the person in the Object level and infers upward to obtain the sequence of Action; The right case (Q2) begins from the
top Action level and performs reasoning downward to obtain the bottom Object level information.

We further propose a structure-aware Hierarchical Spatial-
Temporal Transformer (HSTT) for compositional reasoning.
Different from most existing multi-modal Transformers, HSTT
takes the nodes from the above event graph as visual input.
What’s more, it combines the spatial-temporal context of them
to achieve the answer guided by the graph structure prior.
On the one hand, we encode nodes in the unique graph
traversal order to preserve their hierarchical order and temporal
order. On the other hand, we further follow the event graph
structure to prune the fully self-attention interactions among
graph nodes. Namely, we prevent those interactions between
nodes that are not linked with spatial-temporal edges. In this
way, redundant spatial-temporal context aggregation is avoided
in the model. Then the HSTT performs QA by jointly encoding
the nodes in the event graph and words from the question.
For cross-modal concepts from the same semantic layer, e.g.,
object nodes & object words, we add consistent object level
embeddings to guide the model to better establish hierarchical
semantic correspondence. Therefore, the model can effi-
ciently ground the visual concepts required by the cross-level
question and combine them for multi-step compositional
reasoning.

Experiments on the challenging AGQA [10] and STAR [17]
datasets show the proposed method outperforms existing
VideoQA models by a large margin, including those mod-
els pre-trained with millions of external data. It sufficiently
indicates the effectiveness and superiority of our method.
In summary, our main contributions are: 1) parsing the com-
plex video content into a structured event graph, which is
composed of multi-level visual concepts being well organized
with their spatial-temporal relationships; 2) Exploiting the
event graph structure prior to guide the model to precisely
encode the spatial-temporal context information among the
nodes; 3) Proposing a VideoQA model aiming to address

multi-step compositional reasoning based on the hierarchical
semantic alignment between the graph and the question.

II. RELATED WORKS

In general, the challenges of VideoQA lie in two aspects.
1) The agent needs to reason about the complex video content
which is composed of various visual concepts from temporal
action to spatial human-object relationship [10]. Therefore
prior VideoQA works have introduced different structures to
represent the video, which are shown in Figure 2. 2) The agent
has to ground the visual clues from these video representations
and combine them for compositional reasoning. We introduce
recent three types of VideoQA models in the following.

A. Holistic Spatial-Temporal Models

A couple of early attempts [7], [8], [18], [19], [20], [21],
[22], [23] have been made to jointly model the spatial content
and temporal dynamics in the video. Some works like [23]
take the temporal difference to encode motion information
of video. Others usually extract the appearance and motion
features of video units (clip or frame) separately which is
shown as Figure2(a) and let them interact with the ques-
tion to find the answer. MACN [18] and HME [7] propose
co-memory and co-attention mechanisms respectively to cap-
ture appearance-question and motion-question relations. B2A
[8] further uses the question as a bridge for appearance and
motion interaction. HCRN [19] explores a temporal hierarchy
of video representation from frame level to video level by
stacking a reusable unit conditioned by motion and question
features. While both appearance and motion information are
involved, this type of works all take holistic video features for
dynamic reasoning, which as a kind of coarse representation
is hard to depict the multi-granularity visual elements of the
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Fig. 2. Different video representation structures. (a) Single frame- or
clip-level feature sequence. (b) Graph with frame nodes or object nodes.
(c) Our multi-level event graph whose nodes are visual concepts arranged
in their semantic hierarchies and occurrence time.

complex event from local object interactions to global human
actions.

B. Graph-Structured Models

Recently, many works [8], [9], [24], [25], [26], [27], [28],
[29], [30], [31], [32] try to exploit graph structure to model
the complex relations in VideoQA task including temporal
relations, spatial relations and visual-linguistic relations. Some
works [8], [9], [27] take video units as nodes and use the
graph to model their temporal relations, namely, the frame
graph shown as Figure 2(b). Among them, [8] and [27] further
parse the question into a graph to let it interact with the video
unit graph for visual-linguistic relations modeling. Since nodes
in such graphs contain unparsed mixed semantics, the model
is unable to explicitly establish the semantic correspondence
between the video and the question.

Apart from them, [24], [25], [26], [28], [29], [30], [31],
and [33] introduce an object detection module to obtain object
nodes of each frame/segment to construct object graph shown
as Figure 2(b). Most of them only apply static intra-frame
object interactions to enrich the frame representation with local
information, which cannot depict the temporal dynamics of
objects. References [28], [29], and [31] further apply object
interactions across video sequences for dynamics modeling.
VGT [30] further uses object edges to model the relations.
VISA [34] connects object-action edge for dynamic context
modeling. Compared to monolithic frame and object graphs,
our proposed hierarchical event graph in Figure 2(c) explicitly
depicts four-level visual concepts of an event from local to
global and their spatial-temporal relationship.

C. Multi-Modal Transformer

Recently, the Transformer architecture has been widely
used in video-language pre-training models [35], [36], [37],
[38], [39], [40], [41] to learn joint cross-modal representation
and has shown great efficiency in many downstream tasks
including VideoQA. Most of these works take frame-level
or clip-level features as visual inputs. However, the video
frames have mixed semantics that differ from the specific
tokens in the questions. Thus, it causes difficulties for the
model to learn the cross-modal correspondence between visual
features and textual features. A group of latest works [36],
[42], [43], [44] start to study hierarchical learning of vision-
language representation. ActBERT [36] involves objects and
actions as visual inputs into Transformer to learn both local

and global joint representations. SHA [43] proposes to use
the Transformer Decoder to implicitly identify relations and
actions for each video frame and concatenate them as abstract
video representation. All these models take the unstructured
visual elements as input aiming to learn better cross-modal
correspondence. Compared with them, HSTT can more effi-
ciently build the cross-modal correspondence thanks to the rich
structure prior from the event graph.

There also exist recent efforts [45], [46], [47] in other
fields that explore the possibility of combining graph and
Transformer, which are designed to replace the positional
encoding in Transformer with graph Laplacian eigenvectors to
encode structure information. Reference [47] further proposes
to jointly encode local to cluster node information in the graph.
However, the nodes in the graph are all identical elements.
Different from them, our HSTT can encode hierarchical graphs
whose nodes are from multiple semantic levels. Besides, the
latest works [17], [30], [31] share similar motivation as ours
to solve the VideoQA task with graph reasoning under the
Transformer pipeline. However, most of them simply apply
the self-attention mechanism of the Transformer to aggregate
the graph context. Reference [31] further designs a kernel
attention mechanism to aggregate spatial-temporal context of
the graph nodes. These works can hardly guide the model
to learn the multi-level semantic correspondence between the
graph and the question. In contrast, HSTT explicitly applies
the structure prior of the event graph at the input and encoding
stages separately to enhance the cross-modal reasoning ability
of the Transformer.

III. METHOD

Given a video V and question q as input, we first construct a
hierarchical event graph that gives a structured representation
of the visual event (Section III-A). Then we introduce our
Hierarchical Spatial-Temporal Transformer (HSTT) in the
order of its input embeddings, jointly cross-modal model-
ing, edge-guided attention mechanism and answer prediction
(Section III-B).

A. Event Graph Construction

Figure 2(c) shows the structure of our proposed multi-level
event graph. Let an undirected graph Gevt = (V, E) represent
the event graph of a video with T frames. The node set
V defines different visual elements contained in the event
and the edge set E ⊆ V × V describes the spatial-temporal
context correlation among the visual elements. As introduced
in Section I, the visual elements can be divided into four types,
Object, Relation, Scene and Action, corresponding to
the different levels of a video, i.e., V = Vo ∪ Vr ∪ Vs ∪ Va .
Each node has its timestamp t and confidence score c. There
are two types of edges E = Eintra∪Einter . The intra-level edges
Eintra indicate those ones that connect the nodes from the same
level to describe their long-form temporal dependencies. The
inter-edges Einter can be divided into three subsets Einter =

Er,o∪Es,r ∪Ea,s , where each subset denotes the spatial-temporal
inclusion relationship between two adjacent levels. With such
definitions, we construct the complete event graph in a bottom-
up manner.
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1) Object and Relation Level: Given a video with T
frames, we extract a set of object nodes V t

o = {oi }
M
i=1 and

a series of relation nodes V t
r = {rk}

N
k=1 for each frame at

t , where M , N indicate the number of objects and relations
respectively. Similar to the scene graph generation task [48],
firstly, an object detection network is used to predict the
object proposals. The region of interest (RoI) pooling is
applied to extract the object features of each object node
oi ∈ Rdo . Then a relation prediction head is concatenated
to the object detection network to predict the relation triplets
⟨Subject,Predicate,Object⟩ for each pair of objects.
The conjunction vector rk = [oi ,pi j , o j ] ∈ Rdr , 1 ≤ i, j ≤ M
is used to represent the relation node, where pi j is the union
spatial feature of the object pair oi and o j characterizing their
relation. The relation prediction also outputs the confidence
scores of the object and relation nodes. Naturally, each rk
is connected to its associated subject node oi and object
node o j with relation-object edge ek ∈ Er,o to indicate their
correspondence.

2) Scene and Action Level: Scene level is the most
commonly used video representation in previous studies.
We simply use Convolutional Neural Network (CNN) to
extract 2D feature of each frame to denote the scene node
Vs = {st }

T
t=1 ∈ Rds as [38]. For the action level, we first

apply 3D-CNN model to extract video feature {ft }
T
t=1 ∈ Rd f ,

and then feed them into an action proposal generation network
to generate a series of action proposals with their start and
end timestamps [t s

l , te
l ]

P
l=1, 1 ≤ t s

l ≤ te
l ≤ T , where P is the

number of action proposals. The action node representation
denoted as Va = {al}

P
l=1 ∈ Rda , is finally obtained by pooling

the involved features corresponding to each proposal as al =

pool([fts
l
, . . . , fte

l
]). Then, each action node al is linked to all

the scene nodes within its time span by action-scene edge
el ∈ Ea,s to indicate the scene changing process contained in
the action. At last, we associate the scene node st through all
relation nodes V t

r extracted at time t with scene-relation edge
et ∈ Es,r to depict the spatial layout of each static scene.

B. Hierarchical Spatial-Temporal Transformer

With the structured representation of a visual event, our
Hierarchical Spatial-Temporal Transformer (HSTT) jointly
encodes the extracted visual concepts in the event graph and
semantic words in the questions by a multi-layer Transformer.
Figure 3 shows the overall framework of HSTT.

Input Embeddings: Different from most of the current multi-
modal Transformers, the visual input of our model is graph
nodes rather than image patches. Therefore, there are four
types of input elements to be embedded in HSTT: in addition
to graph nodes and question words, we also inject their
hierarchical information and the node position information.
We embed each of them with a corresponding embedder to
get different input embeddings for the model.

1) Node & Word Embeddings: To embed graph nodes,
we project all node features in each level into a common
D-dimensional embedding space through corresponding linear
transformations W∗ ∈ RD×d∗ (we use ∗ to simply represent
any level). Then we can get their corresponding embedding

X∗ = V∗WT
∗ , where V∗ is the extracted node feature. In con-

sideration that the original Transformer [49] can only encode
the sequence input, we arrange the embeddings into a node
sequence in the order of Object, Relation, Scene and
Action as XN = [Xo,Xr ,Xs,Xa].

For question (together with answer candidates for multi-
choice questions), we follow BERT [50] to embed the question
into a token sequence Xq with the length |q|. Each word in
the question is embedded with Word-Piece embeddings using
a 30,000-token vocabulary that has the same dimension D
as node embedding. And special tokens [CLS] and [SEP]
are added at the beginning and the end of the question. For
multi-choice questions, we follow [26], [38] to concatenate
each answer option to the question to form a set of query
representations {Xn

q}
|N |

n=1, where |N | is the number of answer
options.

2) Level Embedding: To answer the complex compositional
question, the model needs to find the corresponding visual con-
cepts in the structured event graph with respect to the particular
question. For each question, we tokenize it and tag each word
with Part-of-Speech (POS), i.e., categorize them into Object,
Relation, Action and others. Since both graph nodes and
question words consistently carry hierarchical semantics, the
model can learn multi-level cross-modal alignment between
them. To distinguish they are from different levels, we add
corresponding level embeddings XH ∈ {φh(h), 0 ≤ h ≤ 4},
to each of the graph nodes and question words, where φh(.)

is a learnable function. The values of h ranging from 1 to
4 correspond to level from bottom Object to top Action
respectively. For those words not belonging to any level, we set
h = 0.

3) Order Embedding: As shown in Figure 4(a), tokens are
treated equally and encoded in parallel in Transformer for
long dependency modeling. However, this will shuffle the
original context relationships among visual tokens, which are
important for video understanding. Most of the current video
Transformers [36], [51] exploit segment or frame encoding
as a flexible way to inject sequential order of video tokens.
Different from them, our node tokens are well organized
in a hierarchical graph structure rather than a simple node
sequence. As Section III-A introduced, the nodes are arranged
according to their semantic hierarchy h from bottom to top.
Meanwhile, nodes in the same hierarchy are arranged in the
temporal order t .

To preserve the hierarchical and temporal order of nodes
at the same time, we turn to traditional graph search algo-
rithms. By taking different travel strategies, e.g., depth-first
and breadth-first, they can adapt the search direction along
the edges at each step and finally provide an overall graph
search order. In the event graph, the depth search direc-
tion is the semantic hierarchy descending direction, i.e.,
−h, and the breadth search direction is the occurrence time
ascending direction, i.e., t . As shown in Figure 4(b), when
taking the event graph as input, Breadth-First Search (BFS)
algorithm travels the graph firstly according to temporal
order then hierarchical order while Depth-First Search (DFS)
algorithm takes hierarchical-order-first strategy on the con-
trary. As shown in the example, DFS gives an order
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Fig. 3. The framework of the proposed hierarchical spatial-temporal transformer. The given question is embedded into word embeddings Xq and tagged
with level embeddings X H . HSTT encodes the structure prior from the event graph from two aspects: 1) generate reasoning order embeddings X O with
the improved graph search algorithm; 2) Generate the attention mask M for edge-guided attention. HSTT takes the sum of word/node embedding, level
embedding, order embedding as input, and jointly encodes them based on the graph structure prior.

Fig. 4. An example to show how our HSTT exploits the graph structure prior.
(a) Vanilla transformer exploits fully connected self-attention interactions
(black solid edges) to encode each token in parallel (unordered). Each token
actually has different semantic hierarchies h, occurrence time t and confidence
scores c. (b) Our improved DFS and BFS can provide reasonable search
order (gray dashed arrows). (c) With BFS, HSTT can encode nodes in order.
(d) Edge-guided attention only preserves the interactions among nodes with
useful spatial-temporal context.

like “a2→s1→r2→s2→r3” while BFS gives an order like
“a2→s1→s2→r2→r3”. Formally, given a graph G = (V, E)
and a root node R, the traditional graph search algorithm ψ(.)

output the traversal order sequence U = [u1, . . . , uL ], 1 ≤

ui ≤ L , where L is the number of all accessible nodes in the
graph, formulated as,

ψ(R,G) = [u1, . . . , uL ]. (1)

Due to some nodes having the same timestamp, e.g., object
nodes extracted in the same frame, the traversal order could be
uncertain. When encountering uncertainty, the algorithm will
choose the node with maximal confidence score c to let the
model focus on more salient visual concepts. We apply this
improved graph search algorithms on the event graph to obtain
the search order sequence U. Then a learned order embedder
φo(.) is used to get the graph structure encoding XO from the
graph search result

XO = [φo(u1), . . . , φo(uL)]. (2)

At last, we add the order embedding together with the level
embedding on the node embedding to get the overall input
visual embeddings, XV = [XN + XH + XO ]. Similarly, the
textual embeddings are XT = [Xq + XH ].

a) Joint encoding: To fully exploit the inter- and intra-
modality interaction for more thorough context information
fusion, HSTT jointly encodes the visual embeddings and
textual embeddings at the same time. Namely, the cross-modal
embeddings are concatenated as an overall input, and the word
encoding and node encoding are computed in parallel. HSTT
applies a multi-layer Transformer [49] of stacked multi-head
attention building blocks as backbones, which is defined as:

Multi Head(Q,K,V) = Concat (head1, . . . ,headh)WO ,

headi = Attention(QWQ
i ,KWK

i ,VWV
i ),

(3)

where W are different parameter matrices. Specifically,
there are two types of multi-head attention in HSTT: the
intra-modality attention shares the same queries, keys, and
values, i.e., Q = K = V = X,X ∈ {XV , XT } to learn
the pairwise relationship between the paired sample ⟨xi , x j ⟩

within the single modality. The inter-modality attention takes
two groups of input embeddings XV and XT from different
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modalities and learns the cross-modal correspondence between
the paired sample ⟨xi , x j ⟩ from XV and XT , respectively.

As shown in Figure 4(a), the self-attention organizes the
embeddings into a fully connected “graph” among all embed-
dings. All embeddings are packed together as a set of queries
Q, keys K, and values V simultaneously, then the attention
function are applied to them:

Attention(Q,K,V) = Sof tmax(
QKT
√

dk
)V, (4)

in which dk is the dimension of the key vector. Compared
to such a fully connected interaction graph, our event graph,
which is shown in Figure 4(d), has a much sparse structure,
where only nodes with spatial-temporal context relation-
ships are linked together. Such structure reflects the natural
spatial-temporal relationship among all visual elements.

b) Edge-guided attention: Different from the origi-
nal Transformer which employs fully multi-head attention,
we adopt sparse edge-guided attention to encode node
embeddings, which allows for the precise aggregation of
spatial-temporal context based on the constructed event graph.
To achieve this, we maintain an attention mask M ∈

{0,−∞}
|XV | to indicate whether to allow or prevent the

attention interaction among embeddings. The attention mask
is generated based on the adjacency matrix A ∈ {0, 1}

|XV | of
the event graph. Specifically, for each pair of nodes that have
no edge linkage, i.e., Ai j = 0, the interaction between them
will be prevented by a mask Mi j = −∞. The edge-guided
attention function can be calculated as:

Attentionmask(Q,K,V) = Sof tmax(
QKT
√

dk
+ M)V. (5)

According to the definition of the event graphs in
Section III-A, the edges in the graphs are divided into two
types, i.e., E = Eintra ∪ Einter . So, we will introduce the
intra-level interaction and inter-level interaction separately.

4) Intra-Level Interaction: The intra-level edges Eintra indi-
cate nodes linkage from the same level to describe their
long-form temporal dependencies. As shown in Figure 5,
through intra-level interaction, nodes’ representations are
enhanced by aggregating spatial-temporal context from the
other nodes at the same level. Spatial context: “Person” and
“Bottle” can aggregate the spatial context from each other;
Temporal context: “Person” in the first frame can aggregate
temporal context from other frames for dynamic modeling.
The intra-level nodes are fully connected with each other, i.e.,
the adjacency matrix Aintra

= 1. Therefore the intra-level
masks on the diagonal are all zero matrices. Namely, all
intra-level interactions are preserved:

Mintra
i j = 0, h(i) = h( j), (6)

where h(.) denotes the level index of node.
5) Inter-Level Interaction: The inter-edges Einter describe

the spatial-temporal inclusion relationship between two
adjacent levels. As shown in Figure 6, through inter-
level interaction, nodes’ representations are updated by
aggregating the information from parent/child nodes.
To encode the relation “⟨Person,Hold,Bottle⟩”,

Fig. 5. An example of intra-level interaction within objects and relations
and the corresponding attention mask.

Fig. 6. Inter-level interaction. The redundant interactions between nodes
without edge linkage are avoided (red crosses) by applying the inter-level
attention mask Minter .

we aggregate information from its child nodes, “Person”
and “Bottle”. On the opposite, we may also recognize
the unclear object “Food” by reasoning from its parent
node “⟨Person,Grasp,Food⟩”. Notably, the redundant
interaction like “⟨Person,Hold,Bottle⟩” with “Person”
and “Food” from different scenes should be prevented from
the original self-attention in Equation 4. Therefore, we apply
the mask Minter corresponding to the adjacency matrix of
inter-level edges to let the nodes interact following the event
graph:

Minter
i j = −∞(1 − Ai j ), h(i) ̸= h( j). (7)

Overall, adding order embedding as an input element has
injected the node’s position in the graph into the model.
The designed edge-guided attention mechanism can further
encode the graph structure information by applying precise
interactions among nodes strictly following the graph edges.

a) Answer prediction: Through joint encoding, the
HSTT constructs multi-level correspondence between two
modalities by aligning the semantic concepts in the questions
with the visual concepts in the videos from different levels.
Therefore, HSTT can predict the answer by precisely ground-
ing all the visual clues concerned in the question. Specifically,
in each multi-head attention layer, the output attended embed-
dings will be passed into a Feed-Forward and an Add &
Norm layer [49] to compute the next layer’s hidden-layer
representations. After L layers enoding, the output of the
Transformer is a list of D-dimensional feature vectors Z
which is consistent with the input embeddings. The vector
Z[CLS] corresponding to the [CLS] is used for predicting the
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probabilities over all candidate answers y through a two-layer
MLP with Softmax, formulated as,

P( y|V,q) = Sof tmax(Z[CLS]WZ ), (8)

where WZ ∈ Rdz∗D is learnable weight. The cross-entropy
loss function is applied to calculate the loss value.

IV. EXPERIMENT

A. Datasets

We make a full investigation of our proposed model using
recently proposed AGQA [10] and STAR [17] datasets. They
all involve various common multi-step reasoning tasks from
real-world daily life video clips. AGQA is currently the
largest VideoQA dataset containing 192M open-ended ques-
tions about 9.6K videos of real-world daily human activities
collected in Charades [52] dataset. All questions are automat-
ically generated. We utilize its balanced subset (Balanced) of
3.9M question-answer pairs for evaluation. It contains various
question types aiming to comprehensively evaluate the model’s
compositional spatial-temporal reasoning ability. We also use
its two additional settings, novel composition (Novel) and
more reasoning steps (Step) to evaluate the model’s gener-
alization ability.

STAR is a multi-choice type VideoQA benchmark covering
four types of daily-life situated reasoning questions, including
present situation reasoning question type: Interaction and
Sequence, and future situation reasoning question type: Pre-
diction and Feasibility. It consists of 60K questions and 240K
candidate choices about 22K trimmed situation video clips
with ground-truth programs and answers for model diagnosis.

B. Implementation Details

1) Event Graph Construction: Following [53], the Faster
R-CNN model [54] with a ResNeXt-101-FPN backbone [55],
[56] pre-trained on the Visual Genome [57] is used as object
detector. Then it is concatenated with a predefined Transformer
with Total Direct Effect (TDE) analysis [48] as the relation
predictor. We follow [14] to extract dumped frames from the
video, then uniformly sample 10 frames in the videos and
collect M = 10 objects and N = 20 relations with top
confidence scores on each frame. For scene and action levels,
the ResNet-50 [58] is applied to extract 2D features of each
dumped frame for scene nodes. For actions, we first get the
video features by a 3D-ResNet model from RGB frames of the
video sampled at 8 FPS. The network’s weights are initialized
from a model pre-trained on Kinetics [59]. Then based on
the extracted video features, BMN [60] model is trained to
generate action proposals, and those with confidence scores
larger than 0.3 are saved.

2) HSTT: We simply use a shallow 2-layer encoder with
8 attention heads Transformer as a backbone in our exper-
iments, considering the inputs visual tokens already have
strong semantics. The hidden state size is set to 768. For
comparison, our baseline employs the Vanilla Transformer of
the same architecture with the input of 2D frame features as
in [38]. AdamW [61] is utilized to optimize end-to-end model
training, using an initial learning rate of 5e-5 with β1 = 0.9,

TABLE I
AVERAGE RECALL (%) OF VARIOUS MODELS ON SCENE GRAPH GENER-

ATION TASK OF ACTION GENOME DATASET FOLLOWING THE SETTING
IN [14]

TABLE II
AVERAGE RECALL (%) OF VARIOUS MODELS ON ACTION LOCALIZATION

TASK TESTING ON THE CHARADES DATASET

β2 = 0.98, and use learning rate warmup over the first 10%
training steps followed by linear decay to 0. Our model is
trained for 15 epochs using 4 NVIDIA TITAN RTX GPUs
and implemented in PyTorch [62].

C. Evaluation of the Event Graph

The correctness of the event graph directly affects the
quality of video structure representation. Since the AGQA
dataset is constructed based on the action annotations from
Charades [52] and scene graph annotations from Action
Genome [14]. Thus, we use them as benchmarks to evaluate all
involved intermediate tasks, including scene graph generation
and action localization to evaluate the quality of each level of
our constructed event graph.

Action Genome [14] is a scene graph generation benchmark.
We use it to evaluate the correctness of the object and relation
levels. As shown in Table I, the scene graph predictor achieves
31.76% and 35.94% mean recall at the top 20 and 50 respec-
tively, comparable with state-of-the-art performances [51].

Charades [52] is an action recognition benchmark. We use it
to evaluate the quality of generated action proposals. As shown
in Table I, the action localizer also shows promising results.
In addition, we visualize some constructed event graph exam-
ples in Figure 11 at the end of the article.

D. Comparison With State-of-the-Art

1) Evaluation on the AGQA Dataset: In Table III, we com-
pare our model with the state-of-the-art (SOTA) VideoQA
works on the Balanced setting of the AGQA dataset.
HCRN [19], HME [7] and PSAC [6] are all listed as baselines
to benchmark the AGQA dataset in [10]. VQA-T [39] is the
latest Transformer-based VideoQA framework. As shown in
the last line, our HSTT model acquires the best 59.72% result
on all questions. It improves the strongest SOTA method,
VQA-T, by 5.27%, though the Transformer-based methods
commonly show stronger modeling ability over others. HSTT
also outperforms HCRN by a clear margin, which uses a
frame-to-clip video modeling way. Such facts verify that
through explicitly modeling the multi-granularity semantic
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TABLE III
PERFORMANCE COMPARISON ON ALL KINDS OF QUESTION TYPES ON THE AGQA DATASET. WE COUNTED THE PROPORTION OF THE QUESTION

NUMBER OF EACH TYPE. THE TABLE IS DIVIDED INTO FOUR PARTS: ABLATION EXPERIMENTS, SOTA COMPARISON (TRANSFORMER-BASED &
OTHERS), AND LOWER AND UPPER BOUNDS. FOR ABLATION EXPERIMENTS, RESULTS FROM MODELS WITHOUT CERTAIN LEVEL VISUAL

INPUTS ARE HIGHLIGHTED IN DIFFERENT COLORS IF THE QUESTIONS ARE CLOSELY RELATED TO THE CORRESPONDING LEVELS

hierarchy of the video content, our HSTT can effectively
address the complex cross-level reasoning task.

Besides, AGQA uses various dimensions to evaluate the
model’s reasoning ability, including the reasoning types (Rea-
soning), the semantic types of the question’s target (Semantic),
the organizational structure of the question (Structure), and
the forms of the answers (Overall). As shown in the table,
our HSTT performs best on most question types. Specifi-
cally, it achieves significant performance gain with 8.75%
at query Structure at most (HSTT vs. VQA-T: 58.24% vs.
49.49%). It is worth mentioning that our model achieves
relatively higher promotion on the open-answer type ques-
tions, which are more challenging compared to binary-answer
type questions with 50% accuracy purely by blind guessing.
It indicates that our model is good at answering the question
by grounding the specific visual clues based on the multi-level
cross-modal alignment rather than turning to exploit linguistic
biases [10]. Although VQA-T achieves better performance
on some question types, e.g., the obj-act type, the question
number proportion is quite small (only 0.01%) with great
model randomness. Thus, in general, we conclude that our
HSTT acquires better generalization on various question types.

2) Evaluation on STAR Dataset: We also evaluate our
HSTT on the STAR dataset. The graph-based method (L-
GCN [25]) which combines the object-level and scene-level
features and more Transformer-based methods are added
as SOTA methods to be compared. The results are shown
in Table IV. Although dose not pretrained with large-scale
datasets like most of the SOTAs, our HSTT still achieves
the best performance and obtains a clear advantage of 4.41%
over the best of them on average. Among different question
types, MIST [65] achieves a minor advantage on the “Interact”

TABLE IV
QA ACCURACY (%) OF FOUR QUESTION TYPES ON STAR DATASET

type. However, HSTT outperforms it by a large margin on all
other types which challenges the temporal reasoning ability
of models. What’s more, HSTT also shows strong future
reasoning capability on “Predict” and “Feasible” question
types owing to its ability to analyze high-level actions from
complex events.

E. Model Analysis

1) Analysis on the Importance of Each Level: We first
analyze what role each level of our event graph plays on
different question types. In Table III, firstly, compared to
Vanilla Transformer (baseline) with only scene-level features
as input, our HSTT with the complete four levels of visual
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TABLE V
PERFORMANCE COMPARISON ON HSTT WITH OR WITHOUT GRAPH

STRUCTURE ENCODING EVALUATED ON THE AGQA BALANCED SUB-
SET. ONLY RESULTS WITH REPRESENTATIVE QUESTION TYPES

UNDER REASONING AND OVERALL DIMENSION ARE SHOWN

concepts modeling achieves substantial improvement with
11.05% on the overall accuracy. Then, we try to remove all
nodes from a certain level to evaluate their importance. The
results show that without any level of visual concepts will all
lead to a performance drop, which indicates the necessity of
each semantic level in event reasoning. Specifically, the model
without a certain level of visual concepts will struggle on
answering the related questions (colorful cells), e.g., compar-
ing HSTT and HSTT (w/o act.), the performance drops from
20.79% to 16.29% on action recognition Reasoning types (act
recog.). Meanwhile, the performances do not change obviously
on irrelevant questions. But, there is an exception, that is,
removing the object-level nodes causes obvious performance
drops on almost all question types. This is because the
objects are the basic visual elements for other visual concepts.
In conclusion, by completely parsing the low-level objects to
high-level actions in the complex events, our HSTT can not
only deal with local detailed reasoning but also global event
reasoning.

2) Analysis on the Graph Structure Encoding: In HSTT,
we encode the graph structure prior by 1) encoding the nodes
in the graph search order, i.e., HSTT(BFS) and HSTT(DFS),
and 2) using edge-guided attention (EGA) to encode the graph
nodes, i.e., HSTT(EGA). We make ablation studies on the
effect of each of them on Balanced settings with HSTT(w/o),
without using any kind of graph structure prior. As shown
in Table V, both of them gain better performances than
HSTT(w/o) in different types of questions. It indicates that
the natural spatial-temporal context provided by the graph
structure can boost the reasoning ability of HSTT. Specifically,
comparing the two different search strategies, BFS performs
better than DFS, which shows that temporal-order-first is
a more appropriate encoding strategy for Transformer than
hierarchical-order-first. Therefore we combine the BFS with
the EGA in graph encoding, the performance obtains further
gain from 58.48% to 59.72% overall. We also visualize the
performances on various reasoning step questions in Figure 7.
Models with graph structure encoding achieve better results on
almost all reasoning steps even for extremely hard questions
with more than 9 steps.

We additionally try to analyze our Edge-Guided Attention
mechanism on the STAR dataset. Since EGA uses mask
attention to control the interactions among embeddings guided

Fig. 7. QA accuracy of various models on questions with different reasoning
steps. The more steps of reasoning, the greater the difficulty of the questions.
HSTT models with different graph structure encoding strategies outperform
HSTT(w/o) and vanilla transformer on even extremely complex questions of
steps over 9.

by the inter- and intra- edges, we respectively apply a ran-
dom mask on the inter- and intra- attention map with the
same masking number to prove its effectiveness. Namely, |E |

interactions will be blocked randomly for fairness. Randomly
masking the inter-level (rand-inter) and intra-level (rand-intra)
attention map all suffer performance degradation. The com-
parisons are shown in Table IV. Both random inter- and
intra-attention mask strategies show no effect. It indicates that
our EGA can effectively prevent the model from aggregating
redundant even wrong spatial-temporal context information.

3) Analysis on Generalization: We then evaluate the gener-
alization of our HSTT model. Firstly, we compare HSTT with
VQA-T pre-trained on a large-scale automatically generated
VideoQA dataset, HowToVQA69M [39]. From Table VI, our
HSTT without any pre-training beats VQA-T in all kinds of
answer forms of questions. Besides, the pretraining helps little
when addressing complex multi-step compositional reasoning.
On the contrary, with graph structure encoding, our HSTT
can further improve the overall performance from 57.38% to
59.72%. Such results demonstrate that explicitly construct-
ing multi-level cross-modal alignment is more effective than
implicitly obtaining it through pre-training on large-scale data.
And when data is limited, our method can take advantage of
the good graph structure prior introduced by graph structure
encoding. What’s more, compared to VQA-T, our model is
more light-weighted and computational efficiency with the
same multi-head attention layer. When we apply a deeper
Transformer, the model still has some performance improve-
ment space (4 layers HSTT vs. HSTT: 60.34% vs. 59.72%).
However, it is not necessary to adopt a deeper model to
consume more computing resources.

We further evaluate the generalization of our model using
novel composition (Novel) and more steps (Step) settings
in the AGQA dataset. In the Novel setting, the model will
meet unseen compositions of visual concepts in the testing
stage from different reasoning types. And in the Step settings,
the model needs to handle complex questions with more
compositional steps. The performance comparison is reported
in Table VII. HSTT achieves SOTA performance on open-
ended questions. For the binary-answer questions, our model
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TABLE VI
GENERALIZATION EVALUATION BETWEEN HSTT AND VQA-T ON AGQA

BALANCED SUBSET

TABLE VII
PERFORMANCE COMPARISON WITH OTHER VIDEOQA METHODS ON

NOVEL COMPOSITIONS (NOVEL) AND MORE COMPOSITIONAL STEPS
(STEP) SETTINGS

Fig. 8. Attention map among all node embeddings in the event graph of
HSTT model with EGA. EGA guides the model learn dense attention among
intra-level nodes (diagonal) and extremely sparse attention among inter-level
nodes (off-diagonal).

meets the 4.40% and 4.54% gap between HME. However,
HME has severe performance degradation on more challenging
open-answer questions, which shows the limited generalization
of its memory network. Our HSTT model has a stronger
generalization ability on overall questions with 1.76% and
0.81% advantages on the Novel and Step setting respectively
compared to the VQA-T model. In fact, the novel compositions
or the complex multi-step questions can be decomposed into
basic concepts from different semantic levels. Thanks to taking
a structured video representation as input, HSTT can explicitly
model the cross-modal hierarchical correspondence of these
basic concepts, therefore generalizes well on such Novel and
Step settings by compositional reasoning of all grounded
visual concepts.

F. Qualitative Results

We visualize the attention map of a QA example in the
AGQA dataset in Figure 8, Figure 9, and 10. The attention map
is an obvious partitioned matrix with four dense intra-level
attention maps on the diagonal while the inter-level attention
maps are extremely sparse, with only about 1% interactions

Fig. 9. The language-object part of the Co-attention map in HSTT from
head 1 and head 4 respectively. The color reflects the cross-modal correlation.
We only show 5 keyframes of the video for better visualization. The activated
objects (“person”, “bag” and “clothes”) are highlighted and their
corresponding visual regions are listed.

Fig. 10. The language-relation and language-action part of the Co-attention
map in HSTT. In the language-relation part (a), we only show the 2 key
frames of the video for better visualization. Activated concepts are highlighted.
In the language-action part (b), the actions with their corresponding keyframes
and timestamps are shown. “Action 0” is about “dress themselves”
while “Action 7” is about “tiding some clothes”.

preserved. It indicates that intra-level interaction commonly
exists especially at the object level and scene level. On the
contrary, the interactions across different levels are very sparse.
With such sparse interaction, our HSTT can still achieve great
performance thanks to the precise spatial-temporal relationship
delivered by the event graph.

Figure 9 and Figure 10 show the correspondence between
question words and detected objects, relations and actions
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Fig. 11. Qualitative results for event graph generation and VideoQA. The green bars show the action proposals and the selected keyframes in videos are
shown below the bars. Two static scene graphs related to the QA with yellow blocks for objects and blue blocks for relations (predicates) are shown. We only
visualize the nodes with a top confidence score for clear display.

respectively. The darker the color of the grid is, the
greater the correlation between cross-modal concepts is.
In Figure 9, HSTT learns the alignment about key objects,
i.e., the “person”, “bag” and the “clothes”. Although
the “clothes” is indirectly referred by “first thing
they wore” in the question, it can still accurately cor-
relate to the visual cues in the video. We randomly
choose two attention maps from different heads (head
1 and head 4). Both of them can realize such align-
ment. In Figure 10, “<person,wear,clothes>” and
“<person,hold,bags>” are aligned with the words
“wore” and “person holding” in the first frame.
<person,hold,clothes> are aligned with the words
“holding the first thing” in the second frame.
In the Language-Action part, “Action 0” and “Action
7” are aligned with the words “dressing themselves”
and “tidying some clothes” in the question. Such
phenomena sufficiently indicate our HSTT has effectively
learned a multi-level correspondence between visual concepts
and linguistic concepts. It is the key to solving the complex
cross-level reasoning in the Video Question Answering task.
We also make a case study on some of the videos in the
AGQA dataset to give a detailed qualitative analysis. Figure 11
shows the constructed event graphs from 2 raw videos and the
QA results of the proposed model. We choose different types

of questions with various reasoning steps for comprehensive
analysis. In each case, we display the key visual elements
extracted from our event graph on the top. It can be seen
that the constructed event graph can accurately represent
abundant visual concepts at all levels. Besides, 3 different QA
results are shown at the bottom. We highlight the cross-level
semantic concepts in the questions with corresponding colors.
By comparison, you can clearly find strong correspondence
between the visual and semantic concepts. Therefore, our
HSTT can exploit such correspondence to gather visual clues
to predicate the right answers. In all 6 questions, HSTT
answers 4 correctly (green answers). In Q2, HSTT fails
to extract the relation “<person,touch,food>”. In Q6,
HSTT fails to distinguish the “pillow” and “clothes”.

V. CONCLUSION

In this paper, we target at VideoQA task by first intro-
ducing a hierarchical graph structure representation for
complex videos. Then we propose HSTT for compositional
spatial-temporal reasoning guided by the event graph. The
extensive experiments show some insights for the VideoQA
task. 1) The structured parsing of the complex event is
indispensable for the model to ground the local to global
visual concepts concerned in the questions. 2) By precisely
combining the spatial-temporal context of relevant visual
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concepts, the model can be generalized to new concept compo-
sitional reasoning and multi-step reasoning tasks. 3) Explicitly
constructing multi-granularity cross-modal correspondence is
more effective than implicitly obtaining it through large-scale
pretraining for addressing complex compositional reasoning
tasks. Nevertheless, the current definition and formulation of
the event graph is an early attempt. Future work will conduct
further theoretical research to help build a more reasonable
and effective event representation. Besides, dynamic reasoning
with adaptive adjustment mechanism will be explored to
reduce the impact of noise nodes/edges in the graphs. Overall,
we hope our work can inspire more future works to address the
video reasoning task from the perspective of explicit concepts
grounding. It is believed in this way, we can build a more
interpretative and reliable model to vigorously promote the
VQA research.
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