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Gaussian Distributions for Face Recognition
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Abstract— To address the problem of face recognition with
image sets, we aim to capture the underlying data distribution in
each set and thus facilitate more robust classification. To this end,
we represent image set as the Gaussian mixture model (GMM)
comprising a number of Gaussian components with prior prob-
abilities and seek to discriminate Gaussian components from
different classes. Since in the light of information geometry,
the Gaussians lie on a specific Riemannian manifold, this paper
presents a method named discriminant analysis on Riemannian
manifold of Gaussian distributions (DARG). We investigate
several distance metrics between Gaussians and accordingly two
discriminative learning frameworks are presented to meet the
geometric and statistical characteristics of the specific manifold.
The first framework derives a series of provably positive definite
probabilistic kernels to embed the manifold to a high-dimensional
Hilbert space, where conventional discriminant analysis methods
developed in Euclidean space can be applied, and a weighted Ker-
nel discriminant analysis is devised which learns discriminative
representation of the Gaussian components in GMMs with their
prior probabilities as sample weights. Alternatively, the other
framework extends the classical graph embedding method to the
manifold by utilizing the distance metrics between Gaussians to
construct the adjacency graph, and hence the original manifold is
embedded to a lower-dimensional and discriminative target man-
ifold with the geometric structure preserved and the interclass
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separability maximized. The proposed method is evaluated by
face identification and verification tasks on four most challenging
and largest databases, YouTube Celebrities, COX, YouTube
Face DB, and Point-and-Shoot Challenge, to demonstrate its
superiority over the state-of-the-art.

Index Terms— Statistical manifold, kernel discriminative learn-
ing, graph embedding, gaussian distribution.

I. INTRODUCTION

W ITH the rapid develop of multimedia technologies,
image-set based face recognition problem attracts more

and more attention. This problem naturally arises to suffice
for a wide range of real-world applications such as video
surveillance, classification with images from multi-view cam-
eras or photo albums, and classification based on long term
observations [1]–[6]. For the task of image-set based face
recognition, both the gallery and the probe samples are image
sets, each of which contains many facial images or video
frames belonging to one single person. Compared with the
single-shot image, the numerous images in each set naturally
cover more variations in the subject’s face appearance due to
changes of pose, expression and/or lighting. Some useful data
variability information is incorporated implicitly in the image
set, thus more appealing performance is expected. However,
it also poses new challenges on the extraction and utilization
of such information.

To represent the data variability in an image set, the prob-
abilistic model seems a natural choice. Among many others,
Gaussian Mixture Model (GMM) can precisely capture the
data variations with a multi-modal density by using a varying
number of Gaussian components. Theoretically, after modeling
image set by GMM, the dissimilarity between any two sets
can be computed as the distribution divergence between their
GMMs. However, it is not adequate for classification tasks that
need more discriminability. Especially, when the gallery and
probe sets have weak statistical correlations, larger fluctuations
in performance were observed [3], [5], [7]–[9].

To address the above problem, in this paper we propose to
learn a discriminative representation for Gaussian distributions
and then measure the dissimilarity of two sets with the distance
between the learned representations of pair-wise Gaussian
components respectively from either GMM. However, accord-
ing to information geometry [10], Gaussian distributions lie
on a specific statistical manifold which follows Riemannian
geometry. Therefore, discriminant analysis methods developed
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in Euclidean space cannot be applied directly. We thus propose
a novel method of Discriminant Analysis on Riemannian
manifold of Gaussian distributions (DARG). We give a com-
prehensive investigation of the distance metrics between Gaus-
sians. Accordingly, two discriminative learning frameworks
are devised specifically for such manifold. Among them, one
framework is based on deriving the provably positive definite
kernels to embed the manifold into a high-dimensional Hilbert
space, which follows Euclidean geometry. Moreover, through
these kernels, a deliberately devised weighted Kernel Discrim-
inant Analysis is utilized to discriminate the Gaussians from
different subjects with their prior probabilities incorporated.
The other framework extends the classical graph embedding
method to the manifold, where the distance metric between
Gaussians is used to construct the adjacency graph. This
drives the graph embedding to satisfy that after projected,
the Gaussians can be better classified while they also follow
consistent geometric properties with the original Gaussians.

A preliminary version of the method has been published
in [11]. Compared with the conference version, this paper has
the following major extensions: 1) We present an alternative
discriminative learning method on Riemannian manifold of
Gaussians, namely the graph-based DARG, together with the
kernel-based solution in the conference version, drives the
proposed DARG method more comprehensive with enhanced
scalability. 2) We provide a more detailed description of the
proposed method and a wider analysis about the differences
with related works. 3) More extensive experiments are carried
out to compare with other state-of-the-art methods and to
evaluate each stage in the whole method, followed with a more
detailed discussion.

A. Previous Work
For face recognition with image sets, a lot of relevant

approaches have been proposed recently. According to how
to model the image sets, these approaches can be roughly
classified into four categories: linear/affine subspace based
methods, nonlinear manifold based methods, reconstruction
model based methods and statistical model based methods.
They are briefly reviewed as follows.

Linear/affine subspace based methods assume that each
image set spans a linear or affine subspace. Among them,
Mutual Subspace Method (MSM) [1] and Discriminant-
analysis of Canonical Correlations (DCC) [12] represent each
image set as a single linear subspace and compute the
principal angles of two linear subspaces for classification.
While in [3], [8], and [13]–[17]„ each image set is approx-
imated with one or multiple convex geometric region (the
affine or convex hull) and a convex optimization is used to
match the closest “virtual” points. Grassmann Discriminant
Analysis (GDA) [18] and Grassmann Embedding Discriminant
Analysis (GEDA) [19] both formulate the image sets as
points (i.e. linear subspace) on the Grassmann manifold, and
define Grassmann kernel based on principal angles to conduct
discriminative learning on the manifold. Huang et al. [20]
share similar image set model but propose to learn the Pro-
jection Metric directly on Grassmann manifold rather than in
Hilbert space. Since the image sets usually have a relatively

large number of images and cover complicated variations
of view-point, lighting and expression, linear/affine subspace
based methods are hard to satisfactorily model the nonlinear
variations in facial appearance.

To address the limitation of subspace modeling, image set
is modeled by more sophisticated nonlinear manifold which is
usually approximated by a couple of linear subspaces in the
literature. In Manifold-Manifold Distance (MMD) [7], [21],
each image set is assumed to span a nonlinear manifold that
can be partitioned into several local linear subspaces and the
similarity between manifolds is converted into integrating the
distances between pair-wise subspaces. Manifold Discriminant
Analysis (MDA) [22] further extends MMD to work in a
discriminative feature space rather than the original image
space. Cui et al. [5] adopt the similar set modeling strategy
but align the image sets with a generic reference set for
more precise local model matching. Chen et al. [23] propose
to utilize joint sparse approximation to search the nearest
local linear subspaces and consequently measure the image set
distance using distance between the nearest pair of subspaces.
The main shortcoming of nonlinear manifold based methods
is that they require a large data set with dense sampling to
satisfy the manifold assumption and that they mainly use the
relatively weak information (subspace angles) to measure the
distance [4], [24].

Different from the two trends of image set modeling above,
reconstruction models are proposed to learn the image set
representation implicitly and the dissimilarity between image
sets can then be computed by the reconstruction error. For
instance, video-based dictionary [25] and joint sparse repre-
sentation [26] generalize the works of sparse representation
and dictionary learning from still image based to video based
face recognition. More recently, Lu et al. [27] propose to
learn discriminative features and dictionaries simultaneously.
In addition, an Adaptive Deep Network Template (ADNT) [59]
uses deep model to represent image sets. Chen [28] propose
a Dual Linear Regression Classification (DLRC) method to
find a “virtual” face image located in the intersection of the
subspaces spanning from different image sets. As a further
extension of DLRC, a pairwise linear regression classifica-
tion (PLRC) method [29] is proposed to further increase the
unrelated subspace for classification. For the reconstruction
model based methods, classification is usually conducted based
on the minimum residual from the learned class-specific
models.

In the literature, statistical models have also been employed
for image set modeling due to their capacity in characterizing
the set data distribution more flexibly and faithfully. Two
pioneering works [2], [30] in earlier years represent the image
set with some well-studied probability density functions, such
as single Gaussian in [2] and Gaussian Mixture Model (GMM)
in [30]. The dissimilarity between two distributions is then
measured by the classical Kullback-Leibler divergence (KLD).
Since both approaches are unsupervised, it was observed that
their performance may have large fluctuations when the gallery
and probe data sets have weak statistical correlations [12].
In some image representation extraction works for single
image classification, such as [31] and [32], GMM is also
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Fig. 1. Conceptual illustration of the proposed approach. (a) Training image sets in the gallery. Without loss of generality, we only demonstrate the image
sets of three subjects here, with different colors denoting different subjects. (b) Modeling each image set with a GMM. The PDF of each component Gaussian
is parameterized by its sample mean and covariance matrix and lies on a specific Riemannian manifold M. Different legends (i.e. star, circle and triangle)
denote the component Gaussians of different subjects. (c) Kernel-based DARG. By using kernels defined on M, the Gaussian components are mapped to a
high-dimensional Hilbert space H, which is further discriminatively reduced to a lower-dimensional subspace R

d . (d) Graph-based DARG. The adjacency
graph is constructed which incorporates penalty and intrinsic information between the original Gaussian components. Through such graph, we perform graph
embedding and enable the joint embedding of multiple Gaussian components into a more discriminative and low-dimensional statistical manifold M′.

employed to represent the image appearance, which focuses
on the distribution of the local descriptors extracted from one
single image rather than the relationship between different
images.

More recently, other statistical models, such as some natural
statistics, are explored for image set modeling. Covariance
Discriminative Learning (CDL) [4] is proposed to model the
image set by its natural second-order statistic, i.e. covariance
matrix, and further conduct discriminative learning on the
manifold spanned by non-singular covariance matrices. While
only covariance information is modeled in CDL, Lu et al. [24]
propose to combine multiple order statistics. Symmetric Pos-
itive Definite Manifold Learning (SPDML) [33] is proposed
to learn an orthonormal projection from the high-dimensional
SPD manifold to a low-dimensional, more discriminative one.
Log-Euclidean Metric Learning (LEML) [34] learns a tangent
map from the original tangent space to a new discrimina-
tive one. An image set matching Beyond Gaussian (BG)
method [35] is presented which exploits kernel density estima-
tors to estimate the probability distribution function (PDF) of
the image set and studies the kernel and dimensional reduction
of PDFs on the statistical manifold.

Besides, some works, such as [36] and [37], propose
to extract adapted features by deep networks. Specifi-
cally, the multi-manifold deep metric learning (MMDML)
approach [36] learns feature learning networks, one for each
class, by maximizing the manifold margin of different classes.
Zhang et al. [37] address the video face clustering problem
by performing the adaptation of deep representation through
iteratively discovered weak pairwise identity constraints.

B. Overview of Our Approach

For our proposed approach, the overall schematic flowchart
is illustrated in Fig. 1. As mentioned above, we aim at not
only modeling the rich variations in each image set but also
discovering discriminative invariant information hidden in the

variations. Therefore, our method includes two main stages:
statistical modeling of each image set with GMM and discrimi-
native learning of the component Gaussians in the GMMs. The
first stage shown in Fig. 1(b) is quite standard, which can be
achieved by EM-like techniques. Each component Gaussian is
then represented by its sample mean and covariance matrix,
as well as an associated prior probability.

The second stage is however non-trivial as Gaussian distri-
butions lie on a Riemannian manifold [10] while most exist-
ing discriminant analysis techniques only work in Euclidean
space. This motivates us the idea of Discriminant Analysis
on Riemannian manifold of Gaussian distributions (DARG).
To bridge such gap between data on a statistical manifold
(i.e. Gaussians) and the conventional discriminative methods
in the Euclidean space, our DARG develops two discriminative
learning frameworks, among which, one projects data on the
manifold to some Euclidean space (i.e. the Hilbert space
defined by the derived kernels) while the other reforms some
conventional discriminative method in Euclidean space to
precisely match the manifold.

As shown in Fig. 1(c), the kernel-based framework pro-
poses to derive specific kernels to embed the Riemannian
manifold of Gaussians M into a high-dimensional Hilbert
space H, which is then further discriminatively reduced to
a lower-dimensional subspace R

d . It respects the Riemannian
geometry of the manifold and simultaneously enables seam-
less combination with conventional discriminative algorithms
in Euclidean space. In our implementation, by treating the
Gaussians in GMMs as samples and their prior probabilities
as sample weights, we devise a weighted Kernel Discriminant
Analysis to maximize the margin between Gaussians from
different classes.

For the graph-based framework, Fig. 1(d) gives a conceptual
illustration. To meet the specific statistical and geometric
properties on the manifold M, we extend the classical graph
embedding method in Euclidean space [38] by constructing the
adjacency graph with the distance metrics between Gaussians,
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which finally embeds the manifold into a lower-dimensional
and discriminative manifold M′. Our graph-based framework
exactly fits the discriminative learning of Gaussians and simul-
taneously inherits the property of classical graph embedding
method in preserving the geometric structure.

After learning discriminative representations of Gaussians
via either of the two frameworks above, classification can be
easily performed by exploiting the minimal distance between
discriminative representations of component Gaussians from
either GMM of the gallery and probe image sets.

II. GMM MODELING

In face recognition with image sets, it is often insufficient to
model the face image set with one single model, because the
image sets are usually highly nonlinear and cover large data
variations. Therefore, a multi-modal density mixture model,
i.e. Gaussian Mixture Models (GMM), is utilized to represent
these variations efficiently in this study.

Formally, given an image set containing K images, denoted
by X = {x1, x2, . . . , xK }, where x j is the D-dimensional
feature vector of the j -th image, we start with estimating
GMM by the Expectation-Maximization (EM) algorithm. The
estimated GMM can be written as:

G(x) =
m∑

i=1

wi gi(x),

gi(x) = N (x |μi ,�i ), (1)

where x denotes the feature vector of an image in this set,
gi (x) is a Gaussian component with prior probability wi , mean
vector μi , and covariance matrix �i . To facilitate subsequent
processing, a small positive perturbation is added to the
diagonal elements of this covariance matrix, which can make
the matrix non-singular.

As an optimization method, the EM algorithm often gets
stuck to local optima, and hence is sensitive to the initialization
of the model. The simplest way to initialize GMM is to
set a few clusters of data points randomly or by k-means
clustering. However, different image sets usually have varying
numbers of samples and thus the initial number of Gaussian
components for each set should also be varying which is
determined according to the set size. Considering the nonlinear
data distribution in image set, we resort to the local linear
model construction algorithm in [22] and [39], i.e. Hierarchical
Divisive Clustering (HDC), which is able to generate the
initialization adaptively and efficiently.

III. KERNEL-BASED DARG

In this section, we give a detailed description of our pro-
posed kernel-based DARG. As mentioned above, the proposed
kernel-based framework has two key ingredients: (a) Kernels
derived from various Gaussian distances, (b) Kernel discrimi-
native learning. These key ingredients are respectively detailed
in the following two subsections.

A. Kernels Derived From Various Gaussian Distances

By GMM modeling, each image set that typically contains
tens to hundreds of image samples is reduced to a number

of Gaussian components with prior probabilities, which lie on
a specific Riemannian manifold. Since Gaussian distribution
functions have jointly encoded both the first order (mean)
and second order (covariance) statistics, it is nontrivial to
manipulate them with traditional algorithms in Euclidean
space. Inspired by recent progress of learning on manifold [4],
[18], [19], [40], [41], we derive corresponding positive definite
kernels to encode the geometry of the manifold of Gaussians.
Unlike existing methods, the kernel here is a measure of sim-
ilarity between probability distributions rather than similarity
between points in a feature space [42].

For constructing probabilistic kernels for Gaussians,
we investigate the statistical distances quantifying the differ-
ence between two statistical distributions. The important and
well established statistical distances include the following:
f-divergence and its specific examples such as Kullback-
Leibler Divergence and Hellinger distance, Bhattacharyya
distance, Mahalanobis distance, Bregman divergence, Jensen-
Shannon divergence, etc. Besides, there are also some dis-
tances specifically for Gaussians, such as the distance based on
Lie Group [43], [44], the distance based on Siegel Group [45],
etc. Because positive definite kernels can define valid Repro-
ducing Kernel Hilbert Space (RKHS) and further allow the
kernel methods in Euclidean space to be generalized to nonlin-
ear manifolds, it should be guaranteed that the defined kernels
are positive definite. Therefore, we study several representative
distances that can be computed in closed-form and further
derive provably positive definite probabilistic kernels.

1) Kullback-Leibler Kernel: A common distance between
Gaussian distributions is Kullback-Leibler Divergence (KLD).
Formally, given two Gaussian distributions gi = (μi ,�i ) and
g j = (μ j ,� j ), their KLD is computed by

K L D(gi‖g j ) = 1

2

(
tr(�−1

j �i ) + (μ j − μi )
T �−1

j (μ j − μi )

− ln (
det�i

det� j
) − D

)
, (2)

where D is the feature dimension and thus the dimension of
Gaussian distributions.

By exponentiating the symmetric KLD (a.k.a. Jeffreys
divergence), we define Kullback-Leibler kernel for Gaussian
distributions as follows,

KK L D(gi , g j ) = exp(− K L D(gi‖g j ) + K L D(g j‖gi )

2t2 ), (3)

where t is the kernel width parameter. Hereinafter, it is
similarly used in the following kernel functions.

2) Bhattacharyya Kernel: Bhattacharyya Distance (BD) is
also a widely-used distance measure in statistics. For Gaussian
distributions gi and g j , BD can be computed as follows,

B D(gi , g j ) = 1

8
(μi − μ j )

T �−1(μi − μ j )

+ 1

2
ln

(
det �√

det �i det � j

)
, (4)

where � = �i+� j
2 .
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Then, by exponentiating BD, we define Bhattacharyya ker-
nel for Gaussian distributions as

K B D(gi , g j ) = exp

(
− B D(gi , g j )

2t2

)
. (5)

3) Hellinger Kernel: Hellinger Distance (HD) is closely
related to BD, and can be formulated as

H D(gi , g j ) =
(

1 − det(�i )
1/4 det(� j )

1/4

det(�)1/2 ·

exp

{
−1

8
(μi − μ j )

T �−1(μi − μ j )

})1/2

,

(6)

where � = �i +� j
2 .

Thus the corresponding Hellinger kernel is

K H D(gi , g j ) = exp

(
− H D2(gi , g j )

2t2

)
. (7)

4) Kernel Based on Lie Group: Under the framework of
information geometry, it is developed in [43] that the space
of D-dimensional Gaussian distributions can be embedded
into a space of (D + 1) × (D + 1) symmetric positive
definite (SPD) matrices. The embedding is accomplished via
mapping from affine transformation (μ,�1/2) into a simple
Lie Group and then mapping from the Lie Group into the space
of (D + 1) × (D + 1) SPD matrices. Thus Log-Euclidean dis-
tance [46] can be readily used to measure the distance in
this space of (D + 1) × (D + 1) SPD matrices. Let Pi and
Pj denote the SPD matrices corresponding to two Gaussian
distributions gi and g j respectively. Then, the distance based
on Lie Group (LGD) is defined as follows:

LG D(gi , g j ) = ‖ log(Pi ) − log(Pj )‖F , (8)

where P = |�|− 1
D+1

(
� + μμT μ

μT 1

)
.

Then by exponentiating the square of LGD, we define a
kernel based on Lie Group to measure the similarity between
(D + 1) × (D + 1) SPD matrices, which further measures the
similarity between Gaussians as follows.

KLG D(gi , g j ) = exp

(
− LG D2(Pi , Pj )

2t2

)
. (9)

5) Kernel Based on Mahalanobis Distance and Log-
Euclidean Distance: Besides the above statistical distances,
we can also measure the similarity respectively for the
two main statistics in Gaussian distribution, i.e. mean and
covariance matrix. While the former lies in the Euclidean
space, the latter, after regularized to symmetric positive defi-
nite (SPD) matrix, lies on the SPD manifold. We choose Maha-
lanobis distance (MD) to measure the dissimilarity between
means

M D(μi , μ j ) =
√

(μi − μ j )T (�−1
i + �−1

j )(μi − μ j ), (10)

and Log-Euclidean distance (LED) for covariance matrices

L E D(�i ,� j ) = ‖ log(�i ) − log(� j )‖F . (11)

Then we tend to fuse the two distances and construct
an integrated kernel for Gaussians. However, simply expo-
nentiating their sum cannot yield a positive definite kernel

and will suffer from numerical instability. Instead, we derive
kernels from the two distances respectively and subsequently
linearly combine them to form a valid kernel for Gaussians.
Specifically, the kernel based on MD is defined as

KM D(μi , μ j ) = exp

(
− M D2(μi , μ j )

2t2

)
, (12)

while the kernel based on LED is formulated by

KL E D(�i ,� j ) = exp

(
− L E D2(�i ,� j )

2t2

)
. (13)

Finally we fuse the two kernels in a linear combination form
to measure the similarity between Gaussians as follows,

KM D+L E D(gi , g j ) = γ1KM D(μi , μ j ) + γ2 KL E D(�i ,� j ),

(14)

where γ1 and γ2 are the combination coefficients.
a) Positive definiteness of the kernels: Following the

definition, we can easily prove that such kernels (except
Kullback-Leibler kernel) derived above are positive definite.
For space limitation, please refer to our supplementary mate-
rials for detailed proof analysis of the validity and positive
definiteness of these kernel. While currently it is hard to the-
oretically justify the positive definiteness of Kullback-Leibler
kernel, it can still be used as a valid kernel and the numerical
stability is guaranteed by shifting the kernel width [47].

B. Kernel Discriminative Learning

Exploiting the kernels for Gaussian distributions introduced
in the above section, we can naturally extend the kernel
algorithms in Euclidean space to Riemannian manifold of
Gaussian distributions. Here we develop a weighted Kernel
Discriminant Analysis to discriminate component Gaussians
of different classes with their prior probabilities incorporated
as sample weights.

Formally, suppose we have n image sets belonging to
c classes for training. From their GMM models, we collect all
the N Gaussian components denoted by g1, g2, . . . , gN , which
lie on a Riemannian manifold M. Among them, the Gaus-
sians from the i -th class are denoted as gi

1, gi
2, . . . , gi

Ni
,

(
∑c

i=1 Ni = N), with each gi
j accompanied a prior prob-

ability wi
j . Let k(gi , g j ) = 〈φ(gi ), φ(g j )〉 denote a ker-

nel function (which can be any one of the kernels in
Section III-A) measuring the similarity of two Gaussians,
where φ(·) maps points on M into a high-dimensional
Hilbert space H. For a local Gaussian gi

j , we denote ki
j =

[k(gi
j , g1), . . . , k(gi

j , gN )]T ∈ R
N .

To perform discriminative learning with the samples gi
j

as well as their corresponding weights wi
j , in this study

we develop a weighted extension of KDA, which can be
formulated as maximizing the following optimization objective
J (α) using kernel trick similar to [48].

J (α) =
∣∣αT Bα

∣∣
∣∣αT Wα

∣∣ , (15)
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Algorithm 1 Kernel-Based DARG

where

B =
c∑

i=1

Ni (mi − m)(mi − m)T ,

W =
c∑

i=1

1

wi

Ni∑

j=1

(ki
j − mi )(k

i
j − mi )

T , (16)

and

mi = 1

Niwi

Ni∑

j=1

wi
j k

i
j , m = 1

N

c∑

i=1

1

wi

Ni∑

j=1

wi
j k

i
j , (17)

Note that wi = ∑Ni
j=1 wi

j is used to normalize the weights
of samples belonging to a single class to guarantee the sum
of them is equal to 1. Then the optimization problem can
be reduced to solving a generalized eigenvalue problem:
Bα = λWα. Supposing its (c − 1) leading eigenvectors
are α1, α2, . . . , αc−1, we obtain A = [α1, α2, . . . , αc−1] ∈
R

N× (c−1). Furthermore, the discriminative projection of a
new Gaussian gt ∈ M is given by zt = AT kt , where
kt = [k(gt , g1), . . . , k(gt , gN )]T ∈ R

N .
In the testing stage, given a test image set modeled by a

GMM, we first compute the discriminative representations of
its component Gaussians. Then face recognition can be simply
achieved by finding the maximal one among all possible cosine
similarities between the discriminative representations of the
test set and those of all the training sets. The Algorithm 1
summarizes the training and testing process of our proposed
kernel-based DARG.

IV. GRAPH-BASED DARG

As an alternative solution of the kernel-based framework
which often scales poorly with large data size and high data
dimension, we propose to exploit a graph-based discrimina-
tive learning framework to conduct Discriminant Analysis on
Riemannian manifold of Gaussian distributions (DARG).

While the proposed graph-based framework is inspired
from the graph embedding methods working in Euclidean
space [38], we tailor the framework to data on the man-
ifold of Gaussian distributions. Illuminated by graph-based
dimensional reduction on Riemannian manifold in [33], [35],
and [49], we similarly aim to learn a r (r < D) dimensional
latent feature space where data distributions from different
classes can be better discriminated with the geometric structure
of the original component Gaussians preserved properly. Note
that when we map the original features associated with a
component Gaussian with a linear transformation F ∈ R

r×D ,
the obtained projections still follow Gaussian distribution
according to the specific property of Gaussain distribution.
It guarantees that the projected points still fall into the mani-
fold of Gaussians, i.e., for ∀x ∼ g(x) = N (x |μ,�), we have

y = FT x ∼ ĝ(y) = N (y|FT μ, FT �F), (18)

which supports the theoretical rationality of our proposed
graph-based DARG.

As described in Section III-B, we collect all the N Gaussian
components g1, . . . , gN from the n GMMs which respectively
estimated on each image set.

Formally, the objective function is of the following form.

J (F) =
N∑

i, j=1

S(gi , g j )Dist (ĝi , ĝ j ), (19)

where ĝi = N (FT μi , FT �i F) is the data distribution after
mapping gi by a transformation F . S denotes the affinity
matrix defined based on the corresponding distances between
Gaussians Dist (·, ·). Here, we employ KLD, BD or HD as
Dist (·, ·) to measure the distance between Gaussians, as LGD
is invariant under any F .

For a more stable optimization solution, we constrain F
to be orthonormal, i.e., FT F = Ir , where Ir denotes a
r -dimensional matrix. Thus the optimization problem can be
formatted as follows.

F∗ = arg min
F T F=Ir

J (F) (20)

Different from the graph studied in [38], here we construct
the adjacency graph with respect of the geometric properties of
statistical manifold. Let {{gi}N

i=1, S} be an undirected weighted
graph, where each vertex is a Gaussian component gi and the
affinity matrix S ∈ R

N×N measures the compactness of intr-
aclass Gaussians and the separability of interclass Gaussians.
Formally, it can be defined in the following.

S(gi , g j ) =

⎧
⎪⎨

⎪⎩

si j , if gi ∈ Nw(g j ) or g j ∈ Nw(gi)

−si j , if gi ∈ Nb(g j ) or g j ∈ Nb(gi)

0, otherwise

(21)
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where si j = ex p(−Dist (gi, g j )
2/σ) gives a larger weight for

a closer pair of Gaussian components and σ is a constant.
Nw(gi) contains Kw nearest neighbors of gi that share the
same label yi , while Nb(gi) consists of Kb nearest neighbors
of gi belonging to different classes from gi . Here we define the
nearest neighbor as the Gaussian component with the smallest
distance. Note that we can alternatively define the nearest
neighbor through other strategies, such as some ε-ball.

Since Equation (20) is an optimization problem with an
orthonormality constraint, we rewrite it as an unconstrained
optimization problem on a Grassmann manifold, which can
be solved using the gradient descent method on the Grass-
mann manifold. Its reasonability can be verified easily as
the objective function J (F) obviously satisfies the fact that
J (F) = J (FT ) for any orthogonal matrix T ∈ R

r×r .
For further details on optimization by gradient descent on
Grassmann manifold, please refer to [49].

Corresponding to different distances between Gaussians
Dist (·, ·), we calculate the partial derivative of the objective
function J with respect to the transformation matrix F , i.e.,

∂

∂ F
J (F) =

N∑

i, j=1

S(gi , g j )
∂

∂ F
Dist (ĝi , ĝ j ) (22)

The detailed formulation and the corresponding derivation
of the above formula can be found in our supplementary
materials. Though without a theoretical proof for the conver-
gence of the proposed optimization algorithm, we will conduct
experiment to illustrate its convergence in Section VI.

For the test stage, we take a test image set as an example to
give an introduction. Through Equation (18), we first calculate
the projections of its component Gaussians as more dis-
criminative and lower-dimensional representations. To perform
matching between this test set and some training image set,
we compute the distances Dist (·, ·) between all the projected
Gaussians of the test set and those of the training set. Then
we utilize the minimal one among these distances as the
dissimilarity between the test image set and the training image
set and classify the test image set with a simple nearest
neighbor classifier. The proposed graph-based DARG method
is summarized in Algorithm 2.

V. DISCUSSION

A. Differences From Related Works

While our method reveals the data structure in an image set
with a statistical model (i.e. GMM) comprising of multiple
local models (i.e. Gaussian components) and performs dis-
criminant analysis on a statistical manifold, it bears certain
relationship and also has its unique merits compared with
related works in the literature. We highlight them as follows.

1) Differences From Other Statistical Models: Compared
with [2] using single Gaussian and [30] using GMM, the main
difference is that discriminative information is used in our
method such that it can achieve significantly improved resis-
tance to the weak statistical correlation between training and
test data. CDL [4] models the image set with its covariance
matrix, which also inherited in SPDML [33] and LEML [34]
which further perform discriminative learning on the SPD

Algorithm 2 Graph-Based DARG

manifold and in the corresponding tangent space respectively.
However, these methods all ignore the mean information,
which may lead to missing of some useful underlying data
variability information. LMKML [24] combines multiple order
statistics as the feature of image set, but simply treats both
the 2nd order covariance matrix and the 3rd order tensor
as vectors, which ignores the inherent manifold geometric
structure. Different from the methods above, our method
creatively proposes to explore discriminative learning on a
specific Riemannian manifold of statistical distributions.

After our conference version [11], a more recent method
BG [35] adopts a similar strategy of modeling the image set
with some probability distribution function (PDF). The main
differences are listed in the following. 1) Density estimation.
To estimate the PDF for each image set, BG utilizes the non-
parametric and data-driven Kernel density estimation (KDE)
which gives a flexibility estimation theoretically, whereas in
the implementation a good KDE is usually difficult to calculate
with sensitivity to the kernel width. On the contrary, as a
semi-parametric model, GMM can leverage the efficiency
of parametric methods and the flexibility of non-parametric
methods. 2) Distance metric. In BG, for each set, the esti-
mated PDF is used as a single model, and the divergence
between PDFs needs to be approximated, which leads to a
high complexity and consuming time. On the contrary, our
method alleviates it by learning representations for multiple
local models, rather than for each GMM, which ensures that
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the corresponding PDF distance can be easily computed in
closed-form.

2) Differences From Other Set Structure Models: DCC [12],
GDA [18], GEDA [19] and PML [20] model the data structure
of an image set under the assumption of linear subspace.
For these methods, the linear subspace is formulated by an
orthonormal basis matrix, and the distance between them is
measured with the principal angles or the projection metric.
That is to say, for the image set modeling and measuring,
the mean information is ignored, which however usually incor-
porates some useful information. In contrast, our approach
endeavors to measure the distribution distinction of local
Gaussian models with the distance incorporating both mean
and covariance information.

MMD [7], MDA [22] and SANS [23] all approximate the
data structure in an image set with multiple linear subspaces,
but the linear subspaces are computed by a hard partition
that neglects the probabilistic distribution of the set data,
which is mainly encoded with the Gaussian distribution in this
work. Moreover, for measuring the distance between linear
subspaces, MMD considers the mean and variance of data,
but makes no use of discriminative information. MDA is a
discriminative extension of MMD, but only involves mean
information during discriminative learning. SANS measures
image set distance with average distance of the nearest sub-
space pairs extracted by sparse approximation, but the distance
is based on the relatively weaker principal angles [4], [24].
Again, SANS is non-discriminative.

B. Gaussian Component Weights

In this subsection, we give discussions about the effect
of Gaussian component weights in our proposed method.
1) For the kernel-based DARG, the Gaussian component
weights are used in the training stage which leads to accu-
racy gain. These weights are not used in the testing stage.
In our experiments, we have tested several linear combination
schemes, including the classical EMD, to impose the weights
on the similarity computation, which however leads to trivial
gain. The possible reason behind can be adduced that in the
training stage we have incorporated the component weights
in KDA learning, therefore the resulting discriminative model
has already emphasized the components with larger weights
and weakened those with smaller weights (possibly formed by
noisy samples). Therefore in the testing stage it is unnecessary
to weight them again. 2) The component weights are not
incorporated into the graph-based DARG as in our experiments
it barely improves the performance to simply employ them to
weight the affinity matrix. The possible cause may be that it
exerts too much influence on the encoded relationship between
Gaussians while these weights mainly work when used as
estimated auxiliary information in discriminative learning.

C. Contribution

In summary, our contributions mainly lie in four folds: 1)
We propose a new method for discriminative learning with
Gaussians on Riemannian manifold to encourage more robust

Fig. 2. Some examples of the datasets. (a) YTC. (b) COX. (c) YTF.
(d) PaSC.

image set classification. 2) Two discriminative learning frame-
works are devised by respectively using the kernel function
and the adjacency graph to bridge the data on the statistical
manifold and the conventional discriminative learning methods
in Euclidean space. 3) The kernel-based framework derives a
series of kernels for Gaussians with proved positive definite-
ness to embed the manifold into a high-dimensional Hilbert
space, which is then discriminatively reduced to a lower-
dimensional subspace by designing a weighted extension of
KDA. 4) The graph-based framework constructs an adjacency
graph with the corresponding distance metrics between Gaus-
sians to embed the original manifold to a lower-dimensional
and discriminative target manifold with the geometric structure
preserved and the interclass separability maximized.

VI. EXPERIMENTS

In this section, we firstly introduce the experimental settings
for the datasets. Then we investigate different strategies for the
two main stages in our proposed DARG, i.e., GMM modeling
and discriminative learning. Finally, we compare our DARG
with the state-of-the-art in accuracy performance and time
complexity following with a detailed analysis.

A. Databases Description and Settings

We used four most challenging and largest datasets:
YouTube Celebrities (YTC) [50], COX [51], YouTube Face
DB (YTF) [52] and Point-and-Shoot Challenge (PaSC) [53].
Their protocol and performance metric all follow the original
literature. Examples in the four datasets are shown in Fig. 2.

We performed face identification experiments on YTC and
COX. YTC contains 1,910 videos of 47 subjects. We con-
ducted ten-fold cross validation experiments and randomly
selected 3 clips for training and 6 for testing in each of the
ten folds. This enables the whole testing sets to cover all
of the 1,910 clips in the database, which is similar with the
protocol in [4], [5], [22], and [27]. COX contains 3,000 video
sequences from 1,000 different subjects and has a training



WANG et al.: DARG FOR FACE RECOGNITION WITH IMAGE SETS 159

set containing 3 video sequences for each subject. Since the
dataset contains three settings of videos captured by different
cameras, we conducted ten-fold cross validation respectively
with one setting of video clips as gallery and another one as
probe.

To evaluate the experimental performance on face verifi-
cation, we used another two datasets, YTF and PaSC. YTF
contains 3,425 videos of 1,595 subjects. We followed the same
settings with benchmark tests in [52]. 5,000 video pairs are
collected randomly and half of them are from the same subject,
half from different subjects. These pairs are then divided into
10 splits and each contains 250 ’same’ pairs and 250 ’not-
same’ pairs. PaSC contains 2,802 videos of 265 people. Half
of these videos are captured by controlled video camera, and
the rest are captured by hand held video camera. It has a total
of 280 sets for training and experiments were conducted using
control or handheld videos as target and query respectively.

In our experiments, the cropped faces were resized to 20×20
on YTC, 32 ×40 on COX, 24 ×40 on YTF and 256 ×256 on
PaSC as previous works [20], [24], [35], [54]. Then histogram
equalization was implemented for the gray features of faces
in YTC, COX and YTF. For PaSC is relatively difficult,
we further followed [54] to extract the state-of-the-art Deep
Convolutional Neural Network (DCNN) features by using
Caffe [55]. We used the CFW dataset [56] for pre-training
and the training data of PaSC and COX for fine-tuning.

B. Evaluations of the Main Stages

For the two stages discussed in Section I-B, we respectively
investigate their performance on YTC for identification task
and on control videos of PaSC for verification task.

1) GMM Modeling: Firstly we experimentally show the
efficiency of GMM as a density estimation strategy for image
set. Here GMM is compared with other density estimation
methods which have been used to model the image set in the
literature, i.e., the single Gaussian model and KDE. In our
method, following GMM modeling, its Gaussian components
are treated as multiple local models, while for the single
Gaussian model and KDE, the estimated PDF for each image
set is used to model the image set directly. To measure
the dissimilarity between Gaussians, the chosen statistical
distances are in close-form, while for PDFs estimated by KDE,
KLD and HD are approximated as [49]. The kernel and graph-
based method following with KDE respectively refer to the
kernel and dimensionality reduction method in [35], where
the source code is provided by the original author.

The comparison results of the three density estimation
strategies (GMM, single Gaussian and KDE) are reported
in Fig. 3. Note that we refer to the kernel-based DARG as
“DARG-Kernel”, while the graph-based framework is denoted
by “DARG-Graph”. In our kernel-based DARG, since kernels
based on LGD and MD+LED are specific for Gaussian,
we only reported their performance for GMM and single
Gaussian. We can see that for different distances, it generally
performs better to exploit GMM to conduct discriminative
learning on multiple models than single Gaussian or KDE
model, which implies that one single model is inadequate

Fig. 3. Comparison of different density estimation strategies on YTC for
face identification task and control videos of PaSC for face verification task.

Fig. 4. Comparison of different average Gaussian component numbers on
YTC and control videos of PaSC.

to represent the complicated variations inside the image set.
Furthermore, this also gives an experimental support for the
theoretical superiority of GMM over KDE as discussed in
Section V-A.1.

Having shown the superiority of GMM, we compared
the performance of different Gaussian component numbers.
Fig. 4a and Fig. 4b respectively show how the accuracy
changes for DARG-Kernel with kernel based on MD+LED
and DARG-Graph with BD when using different average
numbers of Gaussian components on YTC and control videos
of PaSC. The number of Gaussian components is different
for each image set such that the average number of Gaussian
components is not necessarily integer value. The results show
favorable stability within a proper range of Gaussian numbers.
For instance, on YTC, we get the best result with an average
of about 7 or 8 Gaussian components in GMM. From the
curve, we can analyze that GMM with too small number
of Gaussian components may be insufficient to represent
the complex variation of face images, and using too many
Gaussian components in GMM may make the statistics of each
Gaussian component difficult to estimate.

2) Discriminative Learning: For the stage of discriminative
learning, we compared our DARG and unsupervised nearest
neighbor (NN) classifier with different distances between
Gaussians. The results are reported in Table I. Besides, we also
compared with classifying each image set with the largest
average of image probabilities estimated by GMM [57], which
achieves an accuracy of 53.22% on YTC.

From the comparison results tabulated in Table I, we can
see that by discriminative learning, our DARG performs
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TABLE I

COMPARISON OF DIFFERENT DISTANCE METRICS ON YTC

Fig. 5. Convergence of the optimization algorithm in graph-based DARG
on YTC and control videos of PaSC.

better than the unsupervised classification, which indicates that
discriminative information can facilitate more robust classifi-
cation than directly classifying Gaussians without supervision.
Thus the experiments supports our motivation of learning
discriminative representation for component Gaussians.
As shown in Table I, for kernel-based DARG, the kernel
based on MD+LED works best among the derived kernels
for Gaussians. The reason can be attributed to the fusing
scheme of two statistics (i.e. mean and covariance) in the
kernel combination level. This scheme is less dependent on
Gaussian hypothesis and thus alleviates the measurement error
in case of distribution deviating from Gaussian in real-world
data.

Besides, we also give an experimental proof for the con-
vergence of the optimization algorithm in the graph-based
DARG. Fig. 5 gives the cost changing with the iteration
number on YTC and on control videos of PaSC. Note that
the cost is respectively normalized to [0.1, 0.9]. It shows that
the objective function can finally achieve convergence to a
stable value after a few iterations.

C. Comparison With the State-of-the-Art

We compared our performance to several groups of state-
of-the-art methods for face recognition with image sets:

(1) Single/multiple linear/affine subspaces based methods:
MMD [7], MDA [22], AHISD [8], CHISD [8], GDA [18]

and GEDA [19].
(2) Statistical model based methods:
SGM [2], MDM [30], CDL [4], LMKML [24] and BG [35].
Except SGM and MDM, the source codes of above methods

are provided by the original authors. Since the codes of SGM
and MDM have not been publicly available, we implemented
them using the same GMM estimation code in our approach to
generate Gaussian models. For fair comparison, the important
parameters of each method were empirically tuned according
to the recommendations in the original references. For all
methods, we first used PCA to reduce the data dimension

TABLE II

IDENTIFICATION RATES (%) ON YTC AND COX. HERE, “ COX-i j ”
REPRESENTS THE EXPERIMENT USING THE i -TH SET OF VIDEOS AS

GALLERY AND THE j -TH SET OF VIDEOS AS PROBE

by preserving 95% of data energy on YTC, COX and YTF,
and 80% of data energy on PaSC. In MMD and MDA,
we used the default parameters as the standard implementa-
tion in [7] and [22]. For AHISD and CHISD, we searched
the PCA energy when learning the linear subspace through
{80%, 85%, 90%, 95%}, and reported the best result for each
method. For both GDA and GEDA, the dimension of Grass-
mannian manifold was searched to find the best result. In CDL,
we used KDA for discriminative learning and the same setting
as [4] on YTC, COX and PaSC. Note that on YTF we used a
kernel version of SILD [58] rather than KDA in CDL, BG and
our approach because the restricted protocol of YTF limits the
information available for training to the same/not-same labels.
For LMKML, we utilized the same setting as [24]. In BG,
we reported its performance based on Hellinger distance and
tuned the parameters in the empirical range given in [35],
where the KFDA and dimensionality reduction method are
respected denoted by “BG-K” and “BG-DR”.

For the kernel-based DARG, we took the kernel based on
MD+LED as an example due to its good performance in
Section VI-B. For kernel based on MD+LED, we fixed the
fusing coefficient γ1 as 1, and γ2 was searched in the range
of [0.5,1,2]. In our graph-based DARG, for constructing the
graph, Kw was fixed as 3, and Kb was tuned from 10 to 30.
Among the distances, we chosen BD as an example.

For face identification task, Table II reports the average
recognition accuracy over multiple-fold trials on YTC and
COX. For face verification task, Table III shows the area
under ROC curve (AUC) on YTF. The comparisons on PaSC
are shown in Table IV and performance is evaluated by the
verification rate (%) at a false accept rate (FAR) of 0.01.

From these tables, it is shown that our proposed approach
achieves superior performances in most tests.

(1) Among the non-discriminative methods, compared with
the single modeling methods AHISD, CHISD, SGM, most of
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TABLE III

COMPARISONS ON YTF. THE PERFORMANCE IS EVALUATED BY
THE AREA UNDER ROC CURVE (AUC) IN THIS TABLE

TABLE IV

COMPARISONS ON PASC. NOTE THAT THE VERIFICATION RATES (%)
AT A FALSE ACCEPT RATE (FAR) OF 0.01 ON PASC

IS REPORTED IN THIS TABLE

TABLE V

COMPUTATION TIME (SECONDS) ON YTC FOR TRAINING AND
TESTING (CLASSIFICATION OF ONE IMAGE SET)

the multi-model methods such as MMD, MDM achieve better
performance on both datasets. This supports our motivation to
apply multiple Gaussian components to model each image set.

(2) Among the discriminative methods, GDA, GEDA, CDL,
BG and our proposed DARG conduct discriminative learning
on the manifold, which yield better results than MDA. This is
because MDA learns the discriminative metrics in Euclidean
space, whereas most of them classify the sets in non-Euclidean
spaces. In contrast, these methods extract the subspace-based
statistics in Riemannian space and match them in the same
space, which is more favorable for the set classification task.

(3) Compared with GDA and GEDA, the statistical model
based methods, i.e., CDL, LMKML, BG and the proposed
DARG, have shown their superiority in most of the exper-
iments. The reason can be analyzed to be that GDA and
GEDA both depend on the linearity assumption, which is
hard to satisfy, while the statistical models are free from such
assumption and can better represent the set variations.

(4) Among the statistical model based methods, our method
achieves better performance than CDL and LMKML. This
is because they only utilize the relatively weak information
of set variations while our method attempts to model the
data distribution and jointly fuse both mean and covariance
information. In contrast with BG, our method performs better
in all the experiments, which experimentally supports the
discussions in Section V..

Besides the performance, another important factor is the
time complexity. In Table V, we compared time costs of
our method and some closely related methods on YTC using
an Intel i7-3770, 3.40 GHz PC. For our method, we take
DARG-Kernel with kernel based on MD+LED and DARG-
Graph with BD as examples and the average number of

Gaussian components is about 7. Clearly, our testing speed is
comparable to those of the state-of-the-art methods. Though
our training time is relatively long, it is not a big problem as
the training stage can be conducted offline.

VII. CONCLUSION

In this paper, we propose a Discriminant Analysis on the
Riemannian manifold of Gaussian distributions (DARG) to
solve the problem of face recognition with image sets. Our
method differs from tradition methods in conducting kernel
discriminative learning and graph embedding for Gaussian
distributions on a statistical manifold rather than for vectors in
Euclidean space. We utilized GMM to represent each image set
by a number of Gaussian components with prior probabilities
and then gave a comprehensive investigation of the distances
between Gaussians to measure the geometric properties on the
manifold. Based on these distances, a series of simple but valid
probabilistic kernels were derived and accordingly, a weighted
Kernel Discriminant Analysis technique was devised to max-
imize the margin between Gaussians from different classes.
Alternatively, a graph-based discriminative learning frame-
work was established by constructing the adjacency graphs
according to the distances between Gaussians to encode the
geometric structure and discriminative information on the
manifold. The experiments have demonstrated the superiority
of our proposed approach over the state-of-the-art methods.

In the future, we intend to further advance the framework of
discriminative learning on the statistical manifold with more
divergences or other conventional learning methods. Moreover,
the proposed method will be extended to support more general
application scenarios, rather than limited to faces.
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