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Abstract— Retrieving videos of a particular person with face
image as query via hashing technique has many important
applications. While face images are typically represented as
vectors in Euclidean space, characterizing face videos with some
robust set modeling techniques (e.g. covariance matrices as
exploited in this study, which reside on Riemannian manifold),
has recently shown appealing advantages. This hence results
in a thorny heterogeneous spaces matching problem. Moreover,
hashing with handcrafted features as done in many existing
works is clearly inadequate to achieve desirable performance
for this task. To address such problems, we present an end-to-
end Deep Heterogeneous Hashing (DHH) method that integrates
three stages including image feature learning, video modeling,
and heterogeneous hashing in a single framework, to learn unified
binary codes for both face images and videos. To tackle the key
challenge of hashing on manifold, a well-studied Riemannian
kernel mapping is employed to project data (i.e. covariance
matrices) into Euclidean space and thus enables to embed the
two heterogeneous representations into a common Hamming
space, where both intra-space discriminability and inter-space
compatibility are considered. To perform network optimization,
the gradient of the kernel mapping is innovatively derived via
structured matrix backpropagation in a theoretically principled
way. Experiments on three challenging datasets show that our
method achieves quite competitive performance compared with
existing hashing methods.

Index Terms— Face video retrieval, deep heterogeneous hash-
ing, Riemannian kernel mapping, structured matrix backpropa-
gation.

I. INTRODUCTION

G IVEN a face image of one specific character, face video
retrieval aims to search shots containing the particular

person [1], as depicted in Fig.1. It is an attractive research
area with increasing potential applications in reality for the
explosive growth of multimedia data in personal and public
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Fig. 1. Illustration of face video retrieval. With the query of a specific
character’s (Scofield in the Prison Break TV-series) image, we rank all shots
in database according to their hamming distance to the query. The strings
below videos and images are the learned binary codes.

digital devices, such as: ‘intelligent fast-forwards’ - where the
video jumps to the next shot containing the specific actor;
retrieval of all the shots containing a particular family member
from thousands of short videos [2]; and locating and tracking
criminal suspects from masses of surveillance videos.

In this study, the query and database are provided with
different forms, i.e, still images (points) v.s. videos (point sets),
where each face image or video frame is represented as a point
in Euclidean space. The core problem of the task is to measure
the distance between a point and a set. One straightforward
method is to compute the distance between the query image
and each frame of the video first, and then take the average or
minimum of these distances. However, such a method has two
major limitations: 1) All frames’ representations need to be
stored and heavy time cost is brought for computing all pairs
of distances between still images and video frames. This would
become seriously inefficient in case of long videos and high
dimensional image representations. 2) It will heavily suffer
from large appearance variations in realistic face videos caused
by expression, illumination, head pose, etc.

Alternatively, robustly modeling the video as a whole is a
more effective choice. By doing so, only one representation
of the video and one similarity between the image and video
need to be processed, thus aforementioned problems can be
alleviated. To further improve the efficiency of the storage
space and matching time in the retrieval task, one needs to
learn more compact representations for videos and images.
To this end, hashing as a popular solution for transforming data
to compact binary codes has been widely applied in retrieval
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Fig. 2. Framework of the proposed DHH method. Taking face videos and still images as inputs, DHH first extracts convolutional features for video frames
and still images, and then models videos as covariance matrices on the SPD Riemannian manifold (upper branch) and still images as feature vectors in a
Euclidean space (lower branch). The covariance matrices are further projected into the tangent space (another Euclidean space) of the Riemannian manifold
via a kernel mapping. Finally, the fully connected (FC) layers project representations from either of the two Euclidean spaces into a common Hamming space,
by using an elaborately designed loss function considering both discriminability and compatibility.

tasks especially for large-scale approximate nearest neigh-
bor (ANN) search problem like [3]–[10]. However, for our
task in this study, learning the hashing codes for both images
and videos is non-trivial. Images are typically represented as
feature vectors in Euclidean space while videos are usually
modelled as points (e.g., covariance matrices [11]–[15], linear
subspaces [16]–[20], etc.) on some particular Riemannian
manifolds, resulting in a thorny heterogeneous hashing prob-
lem. Moreover, considering the large appearance variations in
realistic videos, hashing with handcrafted features as done in
many existing works is clearly inadequate to achieve desirable
performance for our challenging task.

To address above problems, we present an end-to-end Deep
Heterogeneous Hashing (DHH) method that integrates the
three stages of image feature learning, video modeling, and
cross-space hashing in a single framework, to learn uni-
fied discriminative binary codes for both face images and
videos. Specifically, as shown in Fig.2, we extract image
representations for both face images and video frames via
two shared convolutional neural network (CNN) branches in
the first stage. Then in the second stage, we model videos
as set covariance matrices in light of its recent promising
success [11]–[15]. Since non-singular covariance matrices
reside on the Symmetric Positive Definite (SPD) Riemannian
manifold, to tackle the key challenge of hashing on manifold,
a well-studied Riemannian kernel mapping is employed to
project data (i.e. covariance matrices) into Euclidean space and
thus enables to embed the two heterogeneous representations
into a common Hamming space in the third stage, where both
intra-space discriminability and inter-space compatibility are
considered.

In the framework, it is worth noting that the Riemannian ker-
nel mapping involves a structured transformation [21], which
is not element-wise differentiable and thus makes it non-trivial
to directly compute the gradients for network backpropagation.
To perform an end-to-end network optimization, the gradient
of the kernel mapping is innovatively derived in this paper via
structured matrix backpropagation in a theoretically principled

way. By doing so, the whole framework can be optimized
using the stochastic gradient descent (SGD) algorithm. To jus-
tify the proposed method, we conduct extensive evaluations on
three challenging datasets by comparing with both multiple-
and single-modality methods, and the results show the advan-
tage of our method against state-of-the-arts.

II. RELATED WORKS

In this section, we first overview existing face video
retrieval works based on real-valued representations, and
then introduce two categories of hashing methods accord-
ing to the source data modality they process, including the
single-modality hashing (SMH) and multiple-modality hashing
(MMH), respectively.

A. Face Video Retrieval

The computer vision community has witnessed continuous
studies on face video retrieval during the past decade, such
as [1], [2], [9], [22]–[27]. Pioneering works [1], [2], [22]–[24],
[26] are mainly based on real-valued video representations and
have made great efforts to build a complete end-to-end system
to process face videos, including shot boundary detection, face
detection and tracking, etc. [22], [23] proposed a cascade of
processing steps to normalize the effects of the changing image
environment and used the signature image to represent a face
shot. To take advantage of rich information of videos, [2]
developed a video shot retrieval system which represents each
face video as distributions of histograms and measures their
similarity by chi-square distance. Reference [26] achieved
significantly better results using the Fisher Vector (FV) [28] as
face video descriptor. However, these real-valued representa-
tion based methods are not qualified for efficient retrieval task,
especially for handling the large scale data nowadays. Instead,
we mainly focus on the hash learning framework, which has
clear advantages in terms of both space and time efficiency,
and is expected to have potential wide applications in larger
scale retrieval tasks.
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B. Single-Modality Hashing

In early years, studies mainly focus on data-independent
hashing methods, such as a family of methods known as Local-
ity Sensitive Hashing (LSH) [4], [29], [30]. However, these
methods usually require long codes to achieve satisfactory per-
formance. To overcome such limitation, data-dependent hash-
ing methods aim to learn similarity-preserving and compact
binary codes using training data. Such methods can be further
divided into unsupervised [5], [6], [31] and (semi-)supervised
ones [6]–[8], [32]–[51].

Recently increasing SMH methods have been proposed
to handle the (face) video retrieval problem. Reference [9]
is perhaps the first work which proposed to compress face
videos into compact binary codes by means of learning
to hash. Reference [25] further replaced image representa-
tion with Fisher Vector to boost the performance. Refer-
ence [27] made an early attempt to employ a deep CNN
network to extract image features and binary codes in sep-
arate stages for each video frame. In the following, [47]–[49]
and [51] studied the video retrieval tasks via integrating
the video representation and hashing into a unified deep
network.

C. Multiple-Modality Hashing

Conducting similarity search across different modalities
data becomes in great demand with more multi-modal data
available, such as searching the Flickr image with given
tags description. Since data from different modalities (e.g.
text vs. image) typically reside in different feature spaces,
it is reasonable to find a common Hamming space to make
the multiple-modality comparison more desirable and efficient.
Towards this end, increasing efforts have been made to the
study of MMH in recent years. Representative methods include
CMSSH [52], CVH [53], MLBE [54], PLMH [55], PDH [10],
MM-NN [56], SCM [57], HER [58], QCH [59], ACQ [60],
CHN [61], BBC [62] and DCMH [63].

At the first glance, our method is relevant to the MMH
family to some extent since they all process data represented
in different forms. The key difference is that most of the MMH
methods have no direct solution to cope with data residing in
heterogeneous spaces while ours is just tailor to handle such
problem. HER [58] also models videos via the popular and
effective set covariance matrices [11]–[13], [15]. However,
it heavily relies on the implicit kernel computation to deal
with the heterogeneous problem which is very time-consuming
and parameters sensitive (e.g., the number of training pairs)
in practical applications. Moreover, the isolation of fixed
feature representation and hash coding in [58] also limits
its performance. In contrast, we propose to exploit the effi-
cient Riemannian kernel mapping to handle the heterogeneous
problem and devise an end-to-end framework to learn fea-
ture representations and heterogeneous codes simultaneously.
To optimize our framework, we successfully solve the general
challenging technical problem of gradient backpropagation
of Riemannian kernel mapping on set covariance matrix,
which is expected to find wide applications in many other
tasks.

III. APPROACH

Our goal is to learn compact binary codes for face videos
and face images such that: (a) each face video should be
treated as a whole, i.e., we should learn a single binary code
for each video; (b) the binary codes should be both inter- and
intra-space similarity preserving, i.e., the Hamming distance
between similar samples should be smaller than that between
dissimilar ones. (c) the whole framework should be optimized
jointly to make sure the compatibility of different modules.
To fulfill the task, as demonstrated in Fig.2, our method
mainly involves three steps: 1) image feature learning via
the convolutional neural network, 2) video modeling, which
applies second-order pooling operation for videos, and 3) het-
erogenous hashing, which learns the optimal binary codes for
face videos and face images in a local rank preserving manner.
Since the first step is the standard CNN features extraction,
we mainly introduce the second and third step in Sec.III-A
and Sec.III-B respectively, and introduce the details of network
optimization via backward propagation in Sec.III-C.

A. Video Modeling

In this step, what we need is to learn powerful representa-
tions for face videos. As a natural second-order statistic model,
set covariance matrix has gained great success in [11]–[15].
It characterizes the variation within each video compactly and
provides fixed length of representation for a video with any
number of frames. Therefore, in this paper the set covariance
matrix is chosen to represent video.

Let D ∈ R
m×d be the matrix of image features present in a

video, where m is the video length and d is the feature dimen-
sion. Then we can compute a covariance matrix C = DT D1 to
represent the second-order statistics of image representations
within the video. The diagonal entries of C represent the
variance of each individual feature, and the off-diagonal entries
correspond to their respective correlations. By doing so, one
video is represented as a nonsingular covariance matrix C
which resides on a specific Symmetric Positive Definite (SPD)
Riemannian manifold, and their distance is usually mea-
sured by Riemannian metrics, e.g., the Log-Euclidean metric
(LEM) [64]. In this case, existing hashing methods developed
for Euclidean data are incapable of working on the manifold.

Alternatively, we utilize an explicit Riemannian kernel map-
ping �log to project the covariance matrix C from the original
SPD manifold to the tangent space of the manifold where
Euclidean geometry can be applied:

Y = �log(C) ≈ log(DT D + εI) (1)

where log(·) is the ordinary matrix logarithm operator and εI
is a regularizer preventing log singularities around 0 when C
is not full rank. To simplify the computation, let D = U�VT

be the singular value decomposition (SVD) of D, �log(C) can
be computed by:

Y = V log(�T � + εI)VT (2)

1To simplify subsequent backpropagation, D is the raw feature matrix
without mean centering.
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B. Heterogeneous Hashing

1) Problem Description: Assume we have Nx training
images and Ny training videos belonging to M categories,
where the subscript x and y denote the two forms, i.e., face
images and face videos. Both images and individual video
frames use the same d-dimensional feature description,
as noted in Sec.III-A. Thus we denote a face image by xi ∈ R

d ,
and a video by yi ∈ R

d×d (here, yi is the vectorized Y
computed by Eqn.(2)). Our goal is to learn two groups of
hash functions (FC layers in Fig.2) to encode real-valued xi
and yi as binary codes, i.e., be

i ∈ {0, 1}K for xi, br
i ∈ {0, 1}K

for yi, where the superscript e and r represent Euclidean space
and Riemannian manifold, respectively, and K is the length
of binary codes in the common Hamming space.

2) Objective Function: To learn desirable hash functions
for retrieval task, we resort to the triplet ranking loss [8],
[39], [42]–[45] considering its outstanding discriminability and
stability. Let u, v,w be three samples (in the form of either
images or videos in our problem) and u is more similar to
v than to w, the goal of triplet ranking loss based Hashing
methods is to project these three samples into Hamming space
where distance between u and w is larger than that between
u and v by a margin. Otherwise, penalty should be imposed
on them as:

Ju,v,w = max(0, α + dh(bu, bv) − dh(bu, bw))

s.t . bu, bv, bw ∈ {0, 1}K (3)

where dh(·) denotes the Hamming distance and α > 0 is a
margin threshold parameter. bu, bv and bw are the K -bit binary
codes of u, v and w, respectively, i.e. they correspond to either
be

i or br
i .

Furthermore, due to the heterogeneous representations of
two forms of data (i.e. xi and yi corresponding to images and
videos), we not only consider the intra-space discriminability
but also the inter-space compatibility. With these principles in
mind, we minimize the loss function:
J = 1

Ner

∑
u,v,w

J er
u,v,w+ λ1

Ne

∑
u,v,w

J e
u,v,w+ λ2

Nr

∑
u,v,w

J r
u,v,w (4)

In Eqn.(4), J er
u,v,w denotes the loss between samples in

image and video format, J e
u,v,w refers to the loss between

samples in image format, and Jr
u,v,w represents the loss

between samples in video format, respectively. λ1 and λ2 are
the pre-defined weighted parameters to balance different loss
terms (the weighted parameter of J er

u,v,w is fixed as 1 for
reference). The formulations of these three terms just take
the basic form of Eqn.(3). Specifically, the triplet {u, v,w}
is constructed according to their class labels, i.e. u and v are
samples with same class labels, and u and w are samples from
different classes. In the case of J er

u,v,w, u, v,w take different
forms (either xi or yi), while for J e

u,v,w and J r
u,v,w, u, v and

w all take the same form of xi and yi respectively. Ner , Ne

and Nr are the number of triplets in each summed term.

C. Backward Propagation

Usually we utilize the stochastic gradient descent (SGD)
algorithms to optimize deep neural network. The critical

operation of SGD is to compute the gradient of the loss
function w.r.t one layer’s inputs and apply the chain rule to
back propagate. As shown in Fig.2, three stages including
image feature learning, video modeling and heterogeneous
hashing are optimized jointly. Unfortunately, the video model-
ing stage involves a structured transformation (i.e., the kernel
mapping in Eqn.(2)), which is not element-wise differentiable.
Moreover, the loss function in Eqn.(4) for heterogeneous hash-
ing suffers from the intractable binary discrete optimization
problem. In this section, we give the gradients of the loss
function w.r.t inputs of loss layer and video modeling layer,
respectively.

1) Backpropagation for Loss Layer: In the loss layer,
inputs (i.e., outputs of FC layer in Fig.2) are binary codes
{bu, bv, bw} from different spaces and categories. Since the
form of J er

u,v,w, J e
u,v,w and J r

u,v,w in Eqn.(4) takes that of
Eqn.(3), hereby we only give the gradients of Eqn.(3) w.r.t the
inputs. To avoid the difficulty of binary discrete optimization,
we relax the binary constraints on {bu, bv, bw} to (0, 1) range
constraints via the sigmoid activation function and replace
the Hamming distance dh(·) with squared Euclidean distance
d2

e (·). By doing so, Eqn.(3) is rewritten as:

J̃u,v,w = max(0, α + d2
e (bu, bv) − d2

e (bu, bw))

s.t . bu, bv, bw ∈ (0, 1)K (5)

The gradients w.r.t {bu, bv, bw} can be derived as:
∂ J̃u,v,w

bu
= �[ J̃u,v,w > 0](2bw − 2bv)

∂ J̃u,v,w

bv
= �[ J̃u,v,w > 0](2bv − 2bu)

∂ J̃u,v,w

bw
= �[ J̃u,v,w > 0](2bw − 2bu) (6)

where �[·] is the indicator function which equals 1 if the
expression in the bracket is true and 0 otherwise.

2) Backpropagation for Video Modeling Layer: In Fig.2,
the video modeling layer takes feature matrix D as input and
outputs the video representation Y in Eqn.(2). It is achieved by

two steps: D
SV D−−−→ {V,�} log(·) in Eqn.(2)−−−−−−−−−−→ Y. Since SVD and

matrix logarithm operation are not element-wise differentiable
to their inputs, in order to obtain the gradients of the loss
function w.r.t the input D, we resort to the chain rule of
structured matrix backpropagation introduced in [21], [65]:

∂ J

∂Xk−1
: dXk−1 = ∂ J

∂Xk
: dXk (7)

where the notation A : G = T r(AT G) is an inner product in
the Euclidean vectorized matrix space, J is the loss function,
Xk−1 and Xk are the input and output of the k-th layer
respectively. dX is the variation of X. Based on Eqn.(7), given
the relationship between dXk−1 and dXk, we can derive the
expected gradients ∂ J

∂Xk−1
expressed w.r.t ∂ J

∂Xk
. In the following,

we compute the ∂ J
∂� and ∂ J

∂V first and then back propagate to
the computing of ∂ J

∂D .
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Compute ∂ J
∂� and ∂ J

∂V . From Eqn.(7), the chain rule of this
step is given by:

∂ J

∂�
: d� + ∂ J

∂V
: dV = ∂ J

∂Y
: dY (8)

where ∂ J
∂Y is the gradients back propagated from the

top of video modeling layer. By taking variation of Y,
we have dY = 2(dV log(�T � + εI)VT )sym + 2(V(�T � +
εI)−1�T d�VT )sym , where Asym = 1

2 (A + AT ). Utilizing the
properties of matrix inner product (which is given in Sec.2 of
the supplementary materials), we have

∂ J

∂�
= 2�(�T � + εI)−1VT (

∂ J

∂Y
)symV (9)

∂ J

∂V
= 2(

∂ J

∂Y
)symV log(�T � + εI) (10)

Compute ∂ J
∂D . From Eqn.(7), the chain rule of this step is

given by:
∂ J

∂D
: dD = ∂ J

∂V
: dV + ∂ J

∂�
: d� (11)

The derivatives of d� and dV are non-trivial and delicate.
Existing works [21], [65]–[67] obtain dV by solving d ∗ d
pairs of equations (each pair determines one element of dV).
The number of equation pairs is equal to the square of singular
values’ number. However, it would be an issue in our task
since only m singular values for D ∈ R

m×d (m << d)
which leads to the system of equations in [21] for solving
dV undetermined (i.e. m ∗ m pairs of equations to solve d ∗ d
variables). To address this issue, we derive dV in two steps.
Specifically, dU is first derived using the m ∗ m pairs of
equations and then dV is obtained with the help of dU and
other equations (details can be found in the supplementary
materials). Here we directly give the derivation results:

d� = (UT dDV)diag

H = UT dD − UT dU�VT − d�VT

dV = (HT �−1
m | − V1�

−1
m HV2) (12)

where V is in the block form V = (V1 | V2), V1 ∈ R
d×m and

V2 ∈ R
m×d (same block form adopted to dV and ∂ J

∂V ). �m is
the left m columns of � and Adiag is A with all off-diagonal
elements being 0. Further using the properties of the matrix
inner product, we have

Q = �−1
m (

∂ J

∂V
)T
1 − �−1

m VT
1 (

∂ J

∂V
)2VT

2

Pi j =

⎧⎪⎨
⎪⎩

1

σ 2
j − σ 2

i

, i �= j

0, i = j

∂ J

∂D
= UQ + U(

∂ J

∂�
− QV)diagVT

+2U(P ◦ (−QV�T ))sym�VT (13)

where ◦ is the Hadamard product and σ is the singular value
in �m .

By employing Eqn.(6), Eqn.(9), Eqn.(10) and Eqn.(13),
the gradients from the loss layers can be back-propagated to
the video modeling layer and further to the frontal CNN layers
in Fig.2.

D. Discussion

1) Application Scope: Since our method learns unified
binary codes applicable to both images and videos, it can be
used for any kind of retrieval scenario where either image or
video is used as query or database. As a universal framework
to jointly optimize multiple modules, our method is very
flexible. The video modeling module can be replaced by
other alternative derivable modeling methods such as temporal
average pooling, and the hashing module can be replace by
softmax loss function for video based classification task.

2) Parameters Sensitivity: There exist a few parameters
in our objective function in Eqn.(4). Since these parameters
including λ1 and λ2 are mainly used for balancing each
component, the performance of our method would be favor-
ably stable across an appropriate range of these parameters.
Besides, the soft margin α is usually set to a small integer
(less than 1/3 of the code length) to balance the stability and
discriminability during training. Extensive experiments will
be conducted to test the sensitivity to the parameters in the
following section.

IV. COMPARISONS WITH STATE-OF-THE-ARTS

In this section, we comprehensively compare DHH with
state-of-the-art hashing methods for the task of video retrieval
with image query. We first evaluate the mAP performance and
computational cost of DHH and the single-modality hashing
(SMH). Then we compare DHH with the multiple-modality
hashing (MMH) quantitatively and qualitatively. Finally, gen-
eralization ability of DHH and some competitors is evaluated
using the self-collected web images as query.

A. Datasets and Experimental Settings

1) Datasets: Generally speaking, the face video retrieval
task has some requirements for the used database in terms
of characters scale, number of videos per character, length of
each video and videos scale. However, to our knowledge, few
released video face datasets, such as the popular BVS and BBT
used in previous works [27], [58], could satisfy the large scale
needs of all terms mentioned above. In this paper, we tried
the best to prepare data and evaluate methods on three large
enough benchmarks. The first one is the YouTube Celebri-
ties (YTC) dataset. It is a widely studied and challenging
benchmark containing 1,910 videos of 47 celebrities collected
from YouTube [68]. These clips are parsed from three raw
videos of each celebrity and the variations among such videos
for each celebrity are quite large. The second dataset Prison
Break (PB) contains 22 episodes of the first season with a main
cast list around 19 characters, released by [25]. By ignoring
the “Unknown” class, it consists of 7,500 video clips. The
third one UMDFaces is a newly released large scale face
dataset, which contains still part and video part. The video part
contains 22,075 raw videos for 3,107 subjects (∼ 7 raw videos
per subject) [69], [70]. Since noise exists in some videos which
affects the convergence of the network, we select a subset
with 200 subjects for the experimental evaluation. Examples of
YTC and UMDFaces are shown in Fig.3, and those of PB can
be found in Fig.1.
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Fig. 3. Examples of the YTC (left half part) and UMDFaces (right half part)
datasets. Each row in corresponding dataset shows the video frames of the
same person. Faces in red box are from the test set and those in green box
are from the training set.

TABLE I

STATISTICS OF THE THREE DATASETS FOR
IMAGE-VIDEO RETRIEVAL TASK

TABLE II

THE BACKBONE NETWORK ARCHITECTURE USED FOR
ALL COMPARED METHODS AND DHH

For subsequent cross-modality evaluation, following [58],
[62], [71], we set samples from two of the three raw videos
of each celebrity in YTC, the first three episodes of each
character in PB and the 70% raw videos of each subject in
UMDFaces as training set, and leave the remaining ones as test
set. Besides, the image modality data is acquired by randomly
sampling frames from the videos. To ensure enough videos
in a mini-batch, each video clip is allowed to have at most
30 frames and those larger clips with more than 30 frames
are divided into several smaller ones. All cropped images
are resized to 64 × 64. Considering the large scale retrieval
scenario, we use the test set to retrieve training set for YTC
and UMDFaces, and the training set to retrieve test set for
PB. In Tab. I, we give the statistics including training and
test scale, videos number per subject of each dataset after the
above processing (the number of sampled images from each
video in training set is 3 and that in test set is 1).

2) Experimental Settings: We implement DHH method
with Caffe2 [72]. The CNN module in Fig.2 can be any
stacked convolutional blocks, and we adopt a memory saving
10-layer VGG-like architecture shown in Tab. II, which is

2The source codes are available at http://vipl.ict.ac.cn/resources/codes.

Fig. 4. Web image examples of the YTC (left part), PB (middle part) and
UMDFaces (right part) datasets. Each row in corresponding dataset belongs
to the same person.

designed by [73] for general still face recognition task. The
video modeling module is appended after the CNN module
and following is the hash learning module realized via the
fully connected layers. As discussed in previous works [21],
[65], [66], [74], the structured gradients backpropagation often
suffers from the numerical instability, i.e. blow up in P of
Eqn.(13) when multiple singular values are close or very small
(less than 1e−3). To address this issue, [21], [65], [66] suggest
training the nets initialized from a pre-trained model on a large
scale dataset. These works also give some training tricks to
alleviate such instability problem such as dropping the small
singular values. For our method, we find that the average
difference between two singular values is large enough (more
than 1) when training with initialization from pre-trained
models which can effectively alleviate the numerical problem
of P; while the average difference might be quite small (less
than 1e−5) when training from scratch which would easily lead
to blow up in P . Besides, the comparison of 12-bit results of
training from scratch and training from pre-training on PB
(mAP: 0.1777 vs. 0.9029) verifies pre-training is helpful to
avoid overfitting on the relatively much smaller video face
datasets (only several thousands of samples as shown in Tab.I)
compared with many larger scale still face datasets (usually
millions of samples). Therefore, we think pre-training the
CNN feature extraction module would be beneficial for better
convergence of our framework.

For fair comparison, all compared deep hashing methods
use such 10-layer backbone architecture for CNN feature
learning, and the network weights are pre-trained for face
classification task using the widely studied CASIA WebFace
dataset [73] to accelerate convergence. Besides, the large
standard deviations of videos number per subject in Tab.I
reveal that they have a quite unbalanced scale for each subject.
Take this into consideration, for experiments on all deep
hashing methods including our DHH, we design a so-called
second-order sampling scheme, e.g. we first randomly select
6 subjects and then sample 5 video-image pairs per subject to
fulfill a batch. By doing so, we then have a balanced number
of images/videos for each subject in a batch.

Specific to our DHH, we set batch size to 930 (it contains at
least 30 videos and 30 still images), momentum to 0.9, weight
decay to 5 × 10−4 and fixed learning rate to 10−4. Besides,
the margin α is empirically set: (2,6,6) on YTC, (2,8,16) on
PB, and (2,4,4) on UMDFaces corresponding to varying code
length K = (12, 24, 48) respectively. The balance parameters
λ1 and λ2 are both set to 1 without elaborate configura-
tion. We compare all hashing methods with code length
K = (12, 24, 48). For all non-deep methods, we utilize
the image representations of the last pooling layer of the
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pre-trained face classification model that is used for initializing
deep hashing methods. Important parameters of each method
are empirically tuned according to the recommendations in the
original references as well as the source codes.

3) Measurements: For quantitative evaluation, we adopt the
standard mean Average Precision (mAP) and precision recall
curves as measurements.

B. Comparison With SMH Methods

As similarly done in [58], we simply treat each video as a
set of frames, and average the similarities between the image
and each frame as the final similarity between the video and
the image for SMH methods.

In this group of experiments, we compare DHH with sev-
eral state-of-the-art SMH methods, e.g., the non-deep family
including LSH [4], SH [5], SSH [33], ITQ [6], DBC [35],
KSH [7] and the deep family including DNNH [8], DSH [46]
and HashNet [50]. The performance comparison is shown in
the upper part of Tab. III. From these results, we can reach
four conclusions: (1) Performance on YTC and UMDFaces
is not as good as that on PB. On one hand, the training
scale for each subject on YTC and UMDFaces is obviously
smaller, but the number of subjects is larger than that on
PB. On the other hand, PB is a TV-series dataset where
appearance of characters is similar across scenes and episodes,
and considerable number of more easily recognized close-up
shots exist, resulting in relatively higher quality images with
smaller intra class and intra video clip variations. Differently,
YTC and UMDFaces are mostly collected in the wild, and thus
have much larger variations. These two main differences give
the reason why PB is relatively easier than other two datasets.
(2) Deep hashing methods (i.e. DNNH, DSH, HashNet and
DHH) outperform the others as expected. This is attributable
to the joint optimization of feature learning and hashing.
(3) Supervised methods usually outperform the unsupervised
(i.e. LSH, SH, ITQ) and semi-supervised (i.e. SSH) ones.
This demonstrates the advantage of using label information
for learning discriminative hashing codes. (4) Our method
DHH achieves the best performance in most cases. While the
advantage of DHH over the other single-modality deep hashing
methods (i.e. DNNH, DSH and HashNet) is not obvious on
PB, one reasonable explanation is that variations within videos
on PB are relatively small as claimed in the first point. Since
the proposed DHH models videos as covariance matrices that
mainly characterize the variation within videos, it performs
much better than SMH methods when large variations occur
(the more frequent case in real world videos). In contrast,
the goal of SMH methods is to optimize hashing code for
each frame and fuse the results of all frames, making them
work well when the variations among frames are relatively
small.

C. Computational Cost Analysis

As mentioned in Sec.I, learning a unified binary code for
each video has advantage over SMH methods in terms of
retrieval time cost. However, it takes price of involving an
extra video modeling operation, which costs some memory

Fig. 5. Memory usage of DNNH vs. DHH for encoding one video with
different video lengths.

usage. In this section, we analyze the computational cost of
DHH for current retrieval task quantitatively.

1) Retrieval Time Evaluation: First, we show the time
efficiency of modeling video as a whole as DHH does (i.e., set
covariance matrix modeling). Specifically, we compare DHH
with SMH methods in terms of retrieval time cost by using the
12-bit binary codes for both query images and video database.
Since all SMH methods treat one video as a set of frames and
average the distances between the query image and each frame
of the gallery video, and thus take the same time cost, we then
choose DNNH as one representative method and record the
total retrieval time cost of all queries on YTC dataset with
an Intel i7-4770 PC. It is observed that DNNH and DHH
take 14.1845 and 0.7817 seconds (nearly 20 times difference),
respectively, which validates the high efficiency of our DHH
for the image-video retrieval task.

2) Memory Usage Analysis: We further quantitatively ana-
lyze the additional memory cost of covariance modeling layer
in DHH compared to SMH methods that use the same network
architecture with DHH and directly encode each frame of
one video without video modeling. We choose DNNH as one
competitor again. Specifically, we feed one same face video to
both DNNH and DHH. By setting the video length as m = 50,
100, 200 and 300 frames and code length to K = 12 bits,
we record the memory usage in Fig.5.

It is observed that there exist slight difference of memory
cost between DHH and DNNH, which results from three
aspects: 1) The video modeling layer outputs the vectorized
matrix representation with size of 1*1*320*320 (the dimen-
sion of image features is 320-D), which costs about 0.4 MB.
2) SVD in the layer also takes several MB to store certain
temporary variables. 3) Before hashing, one face video with
m frames is represented as a 320*320 vectorized matrix in
DHH and m*320 feature matrix in DNNH respectively. Thus,
the size of hashing projection matrix for DHH and DNNH are
320*320*12 and m*320*12 (12 is code length) respectively,
which also contributes to the difference slightly.

In spite of the extra memory cost for video modeling
(< 10 MB), it can be negligible compared to the total cost
of the whole network (hundreds of MB). Consequently, DHH
enjoys large performance improvement and retrieval time
saving compared to the competing SMH methods with slightly
extra memory cost.

D. Comparison With MMH Methods

As introduced in Sec.II, most of MMH methods can only
deal with multi-modal data represented in Euclidean spaces.
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TABLE III

MAP RESULTS COMPARED TO SMH (UPPER PART) AND MMH (LOWER PART) METHODS ON THE
THREE DATASETS FOR VIDEO RETRIEVAL WITH IMAGE QUERY

Fig. 6. Comparison of precision recall curves with the MMH methods on three datasets for video retrieval with image query.

Moreover, to our knowledge, there is no existing deep MMH
method that can handle video and image data in end-to-end
manner like our DHH, so here we focus on comparisons with
non-deep MMH methods. To conduct this group of experi-
ments, we applied the same video modeling operation as in our
DHH to obtain video representation for the compared MMH
methods. As noted in Sec.IV-A, the raw feature for images
and video frames are extracted from the offline pre-trained
face classification model.

Seven representative MMH methods are selected for com-
parison, including CMSSH [52], CVH [53], PLMH [55],
PDH [10], MLBE [54], MM-NN [56] and HER [58]. Detailed
results are shown in the lower part of Tab. III. Since this
category of methods are closely related to our work, we further
compare their precision-recall curves in Fig.6.

Despite using the same video modeling for all competing
MMH methods, it can be seen that DHH outperforms them
by a large margin. On one hand, it can be attributed to our
devised end-to-end framework which jointly optimizes the
image feature learning, video modeling and heterogeneous

hashing. On the other hand, the compared methods have
their inherent limitations for tackling the presented task.
In particular, CMSSH ignores the intra-modality constraints
which are quite useful for learning the common Hamming
space. CVH aims to learn the linear hashing functions which
are doomed to have limited discriminability. PLMH tries
to capture the complex dataset structure with a number of
sensitive parameters to be tuned. PDH utilizes the pairwise
constraints, which result in the disciminability of the learned
hashing codes being inferior to the triplet rank constraints as
our method uses for retrieval problem. MLBE performs pretty
good enough compared with aforementioned MMH methods
mainly benefiting from its global intra-modality weighting
matrices. However, such weighting matrices involved in the
probabilistic model may hinder its performance in binary
encoding. MM-NN is an early method utilizing neural net-
work. However, the stages of image representation learning,
video modeling and hashing are separately optimized, which
is hard to achieve global optimal performance. As a specifi-
cally designed heterogeneous hashing method, HER achieves



QIAO et al.: DHH FOR FACE VIDEO RETRIEVAL 1307

Fig. 7. Top-10 retrieval results of queries on YTC dataset with 48-bit code
length for different methods. Only the first, median and last frame of each
returned video clip are shown. Red bounding box around the video denotes
the wrong returned sample.

Fig. 8. Failed top-10 retrieval results of queries on YTC dataset with 48-bit
code length for DHH. Only the first, median and last frame of each returned
video clip are shown. Red bounding box around the video denotes the wrong
returned sample.

comparable performance to our method by using deep image
features. However, the limited training scale (2,000 image-
video pairs) caused by its computational cost implicit gaussian
kernel mapping scheme, together with its disjoint stages of
feature learning and heterogeneous hashing, have undoubtedly
limited its performance especially on datasets with more
subjects.

E. Qualitative Analysis

In addition to above quantitative comparisons on the three
benchmarks, we also conducted further qualitative retrieval
case analysis. Fig.7 shows some challenging cases for DHH,
HER, MM-NN and MLBE on the YTC dataset with 48-bit
code length. It is observed DHH exhibits the best search
quality in visual relevance in spite of the large variations
caused by pose, illumination, expression, etc. Fig.8 shows
some typical failed retrieval cases of our DHH. We can find
that the returned wrong videos belong to the same celebrity,
and they do look similar to the query subject to some extent.
It indicates that DHH well preserves the visual similarity of
samples from different spaces.

F. Generalization Evaluation

In the above evaluations, the query images are extracted
from videos, and they might have similar distribution as the
training data. To simulate the image-video retrieval scenario

Fig. 9. mAP comparisons for video retrieval with web image query on three
datasets under different code lengths. In (d), UMDFaces* are the results of
models using the independent still and video parts for training and testing.

in real world as much as possible, 100 still images per subject
from the Internet for YTC and PB, together with 50 images
per subject from its still part of UMDFaces are collected and
used as query to test the generalization ability of our DHH
and other compared methods. Some examples of these web
images are shown in Fig.4. It is observed that the self-collected
web images have large domain shift compared to the video
data shown in Fig.3. Therefore it will undoubtedly lead to
huge challenge to the generalization ability of hashing models
trained on the video data.

To be specific, we compared DHH with 5 most competing
methods including DNNH, DSH, HashNet, MM-NN and HER.
Besides, in this experiment we also evaluate methods using the
provided independent images (not from videos) and videos on
UMDFaces for training and testing. We randomly split the still
part of the selected 200 subjects into training and testing sets
with a ratio of 4:1, resulting in 8033 and 2111 images for
each set respectively. The mAP results are shown in Fig.9.
Obviously, DHH achieves the best generalization performance
in most cases. On one hand, it benefits from the end-to-end
learning with big data. On the other hand, the intra-space
constraints can be regarded as regularization terms to avoid
overfitting on the inter-space constraint to some extent, result-
ing in better generalization of our learned Hamming space.
Apart from that, in Fig.9.(d) we can see that performance on
UMDFaces of most methods (except HER) improves when
using the still part instead of sampling video frames as images
for training, which further reveals that the still images in real
world really have different distributions from the video data.

V. MODEL ANALYSIS

In this section, we first perform a series of experiments
to evaluate the effectiveness of each component in DHH.
To further figure out the gap between hashed and real-valued
representations, we also conduct comparisons with state-of-
the-art real-valued face recognition algorithms on the same
retrieval task. In the end, more other retrieval scenarios are
studied to validate the application scope of our DHH.

A. Ablation Study

1) Video Modeling Ablation Study: In this part, we validate
the effectiveness of video modeling, i.e., set covariance mod-
eling and Riemannian kernel mapping. We first replace the
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Fig. 10. 12-bit mAP results of different video modeling schemes on YTC,
PB and UMDFaces.

video modeling layer by randomly sampling several frames
from videos and fix the other modules. We design three
baselines denoted as Sample 1, Sample 15 and Sample 30
via setting the sampling scale as 1, 15 and 30 frames (full
sequence is 30 frames as mentioned in Sec.IV-A) for each
video, respectively. The sampled frames within each video
are further averaged to obtain a single representation for that
video. In addition, we also test another baseline denoted as
DHH w/o log by preserving the covariance modeling but
dropping the Riemannian kernel mapping. Without loss of
generality, the four baselines are tested on three datasets with
12-bit code length.

Results in Fig.10 demonstrate the effectiveness of DHH
compared to randomly sampling frames and the significance
of preserving manifold structure compared to the baseline
without Riemannian kernel mapping. Besides, the performance
usually becomes better with more frames sampled, which
also verifies the advantage of modeling video as a whole
rather than regarding it as isolated frames. Last but not the
least, the gap between DHH w/o log and the three sampling
baselines decreases (even surpasses them on UMDFaces) when
the evaluated dataset becomes more challenging. Therefore
covariance modeling is a very promising second-order feature
pooling scheme especially in the case of large variations exist
within data, which will find more application scenarios in
realistic settings.

2) Objective Ablation Study: In this part, we conduct exper-
iments on PB with 12-bit binary codes for the task of face
video retrieval with image as query to evaluate the signifi-
cance of joint optimization of intra-space discriminability and
inter-space compatibility for learning the heterogeneous binary
codes. Specifically, with the objective function in Eqn.(4),
we design four experimental settings, i.e., (1) λ1 = 0, λ2 = 0:
directly optimizing the inter-space compatibility by ignoring
the intra-space discriminability, (2) λ1 = 0, λ2 = 1: optimiz-
ing the inter-space compatibility with only intra-Riemannian
manifold (video covariance matrix manifold) discriminability
considered, (3) λ1 = 1, λ2 = 0: optimizing the inter-space
compatibility with only intra-Euclidean space (image feature
vector space) discriminabilty considered, (4) λ1 = 1, λ2 = 1:
jointly optimizing the inter-space compatibility and both kinds
of intra-space discriminablity.

The mAP results of the four experimental settings are shown
in Fig.11. It is observed that the performance of our method
degrades by a considerably large margin when we only opti-
mize the inter-space compatibility by ignoring the intra-space
discriminability (i.e. setting (1) vs. setting (4)), it tends to
be much better by involving the intra-space discriminability

Fig. 11. mAP results of our DHH on PB with 12 bits binary codes under
experimental settings (1)∼(4).

(i.e. setting (2) and setting (3)), which shows the advantage of
optimizing both intra- and inter-space local rank of samples.
Besides, it can be observed that the performance of setting
(3) is much better than (about 40%) the setting (2). Since
high-dimensional video data will lose more information than
relatively lower-dimensional image data when embedded into
the much compact Hamming space, it becomes more diffi-
cult to optimize intra-space discriminability in the common
Hamming space for samples from the Riemannian manifold,
and finally leads to inferior inter-space compatibility when
intra-space discriminability is not optimized well.

B. Parameters Sensitivity Study

The hyper parameter α in Eqn.(3) dominates distance mar-
gin between similar sample pairs and dissimilar sample pairs.
The hyper parameters λ1 and λ2 in Eqn.(4) dominate the
intra-Euclidean space discriminability and intra-Riemannian
manifold discriminability, respectively. Both of intra-space
discriminability and inter-space compatibility are essential to
our method as verified above. So we conduct three experiments
for face video retrieval with image as query to investigate the
sensitiveness of these three parameters.

Since an exhaustive search of different combinations of
the parameters are computationally demanding, we choose
to fix two parameters and check the influence of the other
parameter. Specifically, in the first experiment, we fix λ1
to 1.0, λ2 to 1.0 and vary α from 1.0 to 6.0 (under code
length K = 12) to learn different models. In the second
experiment, we fix λ2 to 1.0, α to 2.0 and vary λ1 from
0 to 10.0 to learn different models. In the third experiment,
we fix λ1 to 1.0, α to 2.0 and vary λ2 from 0 to 10.0 to
learn different models. The corresponding results of these three
experiments on PB with 12-bit binary codes are illustrated in
Fig.12, Fig.13 and Fig.14, respectively.

From Fig.12, we can reach the conclusion that the margin
α of triplet loss balances the discriminability and stability of
the learned Hamming space. With too small margin value,
the triplet constraints are easy to be satisfied, resulting in
discriminative Hamming space for the training data only but
poor stability (i.e., generalizability) for newly coming data.
On the contrary, with too large margin value, the learned
Hamming space would have poor discriminability for both
training data and newly coming data. Therefore, to ensure the
learned Hamming space with both desirable discriminability
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Fig. 12. mAP results of our DHH on PB with 12-bit binary codes achieved
by models with different triplet margin α, fixed λ1 = 1.0 and λ2 = 1.0.

Fig. 13. mAP results of our DHH on PB with 12-bit binary codes achieved
by models with different trade-off parameter λ1, fixed α = 2.0 and λ2 = 1.0.

Fig. 14. mAP results of our DHH on PB with 12 bits binary codes achieved
by models with different trade-off parameter λ2, fixed α = 2.0 and λ1 = 1.0.

and a certain degree of stability for new samples, a balanced
margin (e.g. 2.0 empirically found for our DHH method)
would be better.

As shown in Fig.13 and Fig.14, it is clear that the mAP
performance of our model remains favorably stable across a
wide range of λ1 and λ2. Therefore, as long as one integrates
both intra-space (esp., intra-Euclidean space) discriminability
and inter-space compatibility into the objective function and
properly chooses the trade-off parameters λ1 and λ2, the pro-
posed DHH can be expected to achieve quite competitive
retrieval performance against state-of-the-arts.

C. Hashed vs. Real-Valued

Though hashing has been wildly applied in the retrieval area
in light of its time and space efficiency, it loses some infor-
mation due to binary constraints. In this part, we compare the
hashed representations (i.e. 48-bit DHH) and the real-valued
features extracted by some recent state-of-the-art methods for
the task of face video retrieval with image query. Specifically,
we choose three competitive face recognition methods, includ-
ing standard softmax method [73], L2 constrained softmax

Fig. 15. Results of different face representation schemes for the task of video
retrieval with image query on the three datasets.

method [75] and a unified embedding method [76]. For fair
comparison, we equip the optimized objectives of different
face recognition algorithms with the same backbone network
as used in DHH (i.e. the one in Tab.II), and reduce the dimen-
sion of face features (Pool5 in Tab.II) to 48-D via an extra
fully connected layer. For convenience, we denote our 48-bit
DHH as DHH-48, the three compared methods as Softmax,
L2-softmax, Triplet-embedding, respectively. The scale factor
in L2-softmax and triplet margin in Triplet-embbeding are set
as 12 and 0.2 respectively, according to the recommendations
in the original references. Besides, we also utilize the stronger
Face-Resnet backbone adopt in [75] for the L2 constrained
softmax method, denoted as L2-softmax-resnet, and regard
the performance of such model as the upper bound in this
experiment.

Results of the video retrieval with image query on the three
datasets are shown in Fig.15. We can reach three observations.
1) The hashed representations of DHH-48 are comparable
with the real-valued state-of-the-arts when using the same
backbone network. The slight performance decrease is mainly
due to the quantization loss of the binary constraints. 2) The
performance of standard softmax method is not satisfactory.
This is mainly due to the various lengths of intra-class features
learned by the softmax constraints, which would make the
samples of the same class with different feature lengths be
classified to different classes [75]. The L2-softmax well tackles
this issue via constraining the L2 norm of features to be
a constant. Therefore it achieves promising performance on
this task. 3) The performance of Triplet-embedding is not
stable on different datasets, which might need more delicate
sampling techniques and efforts to tune the margin parameter
on different datasets for the triplets.

D. More Retrieval Scenarios

As discussed in Sec.III-D, our framework is qualified for
kinds of retrieval tasks, e.g., the inverse task of retrieving
image with video query, video retrieval with video query. For
the inverse task of retrieving image with video query, we give
the mAP comparison of DHH with state-of-the-arts in Tab. IV
as well as the precision recall curves compared to MMH
methods in Fig.16. For the video-to-video single-modality
retrieval task, since MMH methods cannot be directly applied
on this task limited by their training manners, we only com-
pare DHH with three deep SMH methods including DNNH,
DSH and HashNet. Results are shown in Fig.17. From these
retrieval tasks, we can find that DHH still achieves promising
performance especially on the more challenging YTC and
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TABLE IV

MAP RESULTS COMPARED TO SMH (UPPER PART) AND MMH (LOWER PART) METHODS ON THE
THREE DATASETS FOR IMAGE RETRIEVAL WITH VIDEO QUERY

Fig. 16. Comparison of precision recall curves with the MMH methods on three datasets for image retrieval with video query.

Fig. 17. mAP comparisons for video retrieval with video query on three
datasets under different code lengths.

UMDFaces datasets, which demonstrates the flexibility of our
framework.

VI. CONCLUSION

In this paper, we propose a novel deep heterogeneous
hashing framework named DHH for face video retrieval task.
We attribute the promising performance to three aspects:
First, the integration of image feature learning, set covariance
modeling and heterogeneous hashing makes different modules

compatible with each other; Second, the elaborately derived
structured matrix gradients for set covariance modeling sim-
plifies the end-to-end optimization of the framework; Third,
the objective function considering both inter- and intra-space
discriminability makes the learned common Hamming space
aligned well between image and video modalities. Since the
three modules of the framework are plug and play, they have
wide potential applications in other tasks like video based
classification. In addition, our method does not exploit the
temporal information of videos directly, fusing such informa-
tion and current second-order information together is one of
our future directions.
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