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A B S T R A C T

The 3D comprehension ability of indoor environments is critical for robots. While deep learning-based methods
have improved performance, they require significant amounts of annotated training data. Nevertheless, the
cost of scanning and annotating point cloud data in real scenes is high, leading to data scarcity. Consequently,
there is an urgent need to investigate data-efficient methods for point cloud instance segmentation. To tackle
this issue, we propose to leverage the geometric and scene context knowledge inherent in synthetic data to
reduce the need for annotation on real data. Specifically, we simulate the process of human scanning and
collecting point cloud data in real-world scenes and construct three large-scale synthetic point cloud datasets
using synthetic scenes. The scale of these three datasets is more than ten times that of currently available
real-world data. Experimental results demonstrate that the incorporation of synthetic point cloud data can
increase instance segmentation performance by over 18.8 percentage points. Further, to address the problem of
domain shift between synthetic and real data, we propose a target-aware pre-training method. It integrates both
real and synthetic data during the pre-training process, allowing the model to learn a feature representation
that can effectively generalize to downstream real data. Experiments show that our method achieved stable
improvements on all three synthetic datasets. The data and code will be publicly available in the future.
1. Introduction

3D instance segmentation is an important task for indoor scene
understanding. It serves as a fundamental technology for robotic per-
ception capabilities, and as such, an increasing number of researchers
are devoted to this task [1,2]. With the success of deep learning, the
performance of this task has steadily improved. Although promising,
the demand for huge annotated data is quite expensive. Compared with
2D image understanding tasks, collecting 3D point clouds in the real
world and annotating them manually is more labor-demanding. This
leads to a scarcity of real-world 3D point cloud data.

Considering the high cost of annotating 3D data, it is highly mean-
ingful to explore how to achieve accurate 3D scene understanding with
as little manual annotation as possible. There is an urgent demand
for conducting research on data-efficient point cloud instance segmen-
tation. One type of popular approach [3,4] is to utilize contrastive
learning methods, which employ self-supervised loss to obtain general-
izable feature representations. Another approach is to fully utilize the
unlabeled data through self-training strategies [5–7]. Although these
approaches can achieve certain effects, due to the scarcity of 3D data
itself, their methods have limited improvements.
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In this study, we propose to use external knowledge to reduce
reliance on annotated real data. In recent years, there has been a
significant accumulation of CAD synthetic data in both industry and
academia. These synthetic data contain implicit knowledge about ob-
ject shapes and scene context that is informed by human expertise.
We leverage the pre-existing synthetic data accumulation to create syn-
thetic point cloud data by mimicking the scanning and data collection
process used in real-life scenarios. This allows us to obtain a large
amount of annotated point cloud data at a low cost.

Collecting synthetic point cloud data mainly involves two steps:
constructing synthetic scenes and scanning the synthetic scenes with a
virtual camera. For synthetic scene construction, as shown in Fig. 1,
we classify it into three types based on the amount of prior hu-
man knowledge involved in generating the layout: randomly generated
layout, rule-based layout, and manually designed layout. There are
prior works that can be utilized for these three methods, which have
explored the use of synthetic data in other fields such as synthetic
2D data [8], embodied tasks [9], and SLAM [10]. For scanning the
synthetic scenes, as shown in Fig. 2, we capture RGB-D frames with
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Fig. 1. A synthetic scene contains two main components, 3D object models and scene
layouts. The scene layout describes the position and orientation of objects within the
scene. There are three ways to generate layouts: (1) Synthetic layouts with random
object poses. (2) Rule-based layouts using indoor scene priors. (3) Manually designed
layouts.

Fig. 2. Pipeline of scanning and generating point cloud from synthetic scenes.

a virtual camera and apply a 3D reconstruction algorithm to get the
synthetic point cloud data. By scanning these three types of synthetic
scenes, we have constructed three large-scale synthetic point cloud
datasets, ScenenNetScan, procTHORScan, and InteriorNetScan. Table 1
shows the statistical information of the synthetic point cloud datasets. It
can be seen that compared to existing point cloud datasets, our dataset
has a scale of more than ten times.

Through supervised pre-training on the synthetic dataset, we can
learn category-specific shape knowledge and context knowledge of the
scene. The learned knowledge can be transferred to downstream tasks
with only a small amount of real data labeled for fine-tuning, resulting
in more accurate instance segmentation. Compared with the train-
from-scratch method, using synthetic data can improve performance by
more than 18 points. Furthermore, experiments show that the feature
representation learned on our synthetic data exceeds that learned on
real dataset, which fully demonstrates the effectiveness of the collected
dataset.

The domain discrepancy between synthetic and real data can hin-
der the effectiveness of knowledge transfer from synthetic data. To
overcome this challenge, we propose a novel target-aware pre-training
approach that leverages real data during the pre-training process on
synthetic data. By incorporating real data, we fully exploit its geometric
and contextual knowledge to learn a feature representation that can
generalize to downstream real data, thus enhancing the transferabil-
ity of our model. Our approach is validated on the collected three
large-scale synthetic datasets, and experimental results demonstrate its
superiority over direct fine-tuning.

2. Related works

In this section, we first review the existing 3D real and synthetic
data. We then introduce related works on point cloud instance segmen-
tation and data efficiency.

Early indoor 3D scene understanding was based on RGB-D datasets,
such as NYU v2 [11], which contains 1449 frames with semantic seg-
mentation annotations, and SUN RGB-D [12], which contains 10,335
152
Table 1
Comparison between existing real-world point cloud datasets and our newly collected
synthetic point cloud datasets.

Type Datasets # Scans # Classes

Real-world
S3DIS [13] 271 13
ScanNet [15] 1613 20
3RScan [16] 1482 27

Synthetic
InteriorNetScan 19,951 40
procTHORScan 36,000 40
SceneNetScan 17,687 56

frames of RGB-D images with 2D and 3D detection annotations. These
datasets provide limited 3D information, usually from a single view-
point of the scene. Later, a group of 3D scanned scene point cloud
datasets based on surface reconstruction emerged. They acquire data
using RGB-D cameras or Matterport cameras in the scene and obtain
mesh models through reconstruction algorithms. Due to the high cost of
collecting 3D data, the amount of data obtained in real-world scenarios
is usually limited. Representative works with datasets containing a
small number of samples include S3DIS [13], SceneNN [14], which
typically contain only one or two hundred scenes. Even datasets with
a larger amount of data, such as ScanNet [15] and 3RScan [16], have
only a little over a thousand scenes.

In recent years, both industry and academia have accumulated
synthetic 3D data. In terms of 3D object data, ShapeNet [17] and
ModelNet40 [18] are datasets of single-object CAD models. In terms
of synthetic 3D scenes, academic research has developed simulation
environments for agent-related embodied tasks, such as AI2THOR [19],
which was designed by experts. Although it has strong interaction
capabilities, the number of scenes is still limited. Subsequent work,
such as procTHOR [9], solved the problem of scene scale by gener-
ating scenes using design rules. In industry, interior design companies
have accumulated a large number of synthetic indoor scenes, such as
InteriorNet [10] and 3D-FRONT [20]. Song et al. collect SUNCG [21]
which is a manually created large-scale dataset of synthetic 3D scenes.
As of now, it is no longer publicly available. There is currently a lack
of scene scan point cloud data similar to ScanNet. In this work, we
focus on constructing scan point cloud datasets using a data collection
method similar to that used in real-world scenarios in synthetic scenes,
and explore how to use these large-scale synthetic point cloud data to
solve the Data Efficiency problem in real-world data.

Point cloud instance segmentation is an important foundational
technology for 3D scene understanding. Hou et al. [22] use 3D convo-
lutions to generate 3D anchor bounding box proposals and use 3D-RPN
and 3D-RoI to infer object bounding box locations, class labels, and
per-voxel instance masks. Yang et al. [2] propose to speed up the
inferencing speed using a single-stage, anchor-free, NMS-free method.
Engelmann et al. [23] propose to generate proposals by predicting
object centers. PointGroup [1] proposes to cluster in both the Euclidean
space and the voted center space. Recently, there are also works like
MASK3D [24] and SPFormer [25] using transformers to boost the
performance.

A prominent solution for achieving data-efficient point cloud seg-
mentation involves the acquisition of proficient feature representations.
PointContrast [4] and CSC [3] stand as unsupervised pre-training meth-
ods that are designed with a focus on point-level contrastive loss.
Meanwhile, TWIST [6] centers its attention on the semi-supervised
setting and proposes the utilization of unlabeled data to enhance model
performance. Another avenue to explore is harnessing the wealth of
knowledge encapsulated within synthetic data. While certain related
works exist in the realm of 2D tasks [8,26], the domain of 3D indoor
scene comprehension employing synthetic data remains relatively un-
derexplored. RandomRooms [27] employs synthetic object CAD models
to construct an instance-level contrastive loss framework, thereby facili-
tating the learning of point cloud feature representations. In this work,
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we are committed to generating synthetic point clouds that resemble
real point clouds and attempting to learn scene context and object
shape knowledge within them. Furthermore, we embark on preliminary
investigations into optimizing the utilization of synthetic data. We
emphasize that the disparity between synthetic and real data domains
can hinder effective knowledge transfer when employing the conven-
tional pre-training followed by fine-tuning approach. To surmount this
challenge, we introduce a novel pre-training methodology within this
paper, tailored to address and mitigate domain dissimilarity issues.

3. Synthetic point cloud dataset construction

In real-world scenarios, point cloud datasets are typically collected
using handheld devices to scan the environment and generate point
cloud data through 3D reconstruction algorithms. This has resulted in
existing 3D point cloud datasets, such as ScanNet [15] and S3DIS [13],
being relatively small in scale. Furthermore, annotating point cloud
data is time-consuming and costly. It is therefore promising to seek
to construct synthetic scenes and virtually scan point cloud data in
synthetic scenes. In this section, we first introduce synthetic scene
construction in Section 3.1 and point cloud generation in Section 3.2.
Then, we validate the effectiveness of the collected synthetic data in
Section 3.3.

3.1. Synthetic scenes

The first step in obtaining point cloud data is to construct synthetic
scenes using the 3D models. As shown in Fig. 1, there are two primary
components, large-scale 3D object model data and scene layout infor-
mation about object placement and pose. Object models are available in
the academic research field such as ShapeNet [17] and ModelNet [18]
datasets, and a large amount of data has been accumulated in industrial
interior decoration and online furniture shopping platforms.

The layout of a scene determines the positions and postures of
objects. It includes contextual information about the environmental
context and is crucial for understanding the scene. The generation of
scene layouts involves human prior knowledge about scenes. Depend-
ing on the degree of prior knowledge, as shown in Fig. 1, we can
categorize scene layout construction into three types.

Randomly generated layout. A simple way to construct a scene is
to randomly place objects in a room. A physically plausible scene can
be obtained using a physics engine. This method has the lowest con-
struction cost and requires minimal human prior knowledge. SceneNet
RGB-D [8] is representative of this type of work, and the authors hope
to use this simple scene construction method to cheaply collect 2D
synthetic images with annotations.

Rule-based layout Real-life environments often adhere to spe-
cific patterns and priors in their layouts. In a household, rooms tend
to follow particular distributions, and objects exhibit consistent co-
occurrence relationships and relative positions. Items are positioned
according to rules, such as placing refrigerators in corners and against
walls, and cabinets attached to walls. By manually summarizing these
scene priors, rule-based algorithms like procTHOR [9] can gener-
ate house layouts based on this knowledge. Unlike the fully ran-
dom approach, this method incorporates more human-derived pri-
ors and knowledge, as seen in procTHOR, which generates synthetic
environments for embodied tasks.

Manually designed layout In addition to the above two
approaches, the industry has also accumulated a large amount of 3D
scene data, especially in the field of interior design. Countless interior
scene models have been designed by home decorators over the past
few years. People use these synthesized 3D scenes as blueprints to
decorate real houses. Therefore, this type of data can be considered the
closest to real-world indoor scene data. InteriorNet [10] leverages the
availability of professional interior designs and renders video sequences
to benchmark Simultaneous Localization and Mapping (SLAM). We aim
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Fig. 3. Visualization of the real-world scanned point cloud dataset ScanNet and
our newly collected synthetic point cloud datasets SceneNetScan, procTHORScan and
InteriorNetScan.

to use this type of data to generate scanned point cloud data. Compared
to the first two methods of layout generation, this expert-designed
approach contains the most human priors, and its design and collection
costs are also the highest.

3.2. Point cloud generation

Collecting point cloud data in indoor scenes, such as ScanNet [15],
typically requires personnel to capture a video using an RGB-D camera.
3D reconstruction algorithm such as BundleFusion is applied to obtain
the 3D mesh model and the point cloud of the scene. On average,
collecting one ScanNet scene requires 14.9 min, while annotating one
scene takes 22.3 min.

To make the synthesized point cloud data closer to the point cloud
data collected from real scenes, we adopted a similar process for data
collection. The process is illustrated in Fig. 2. Given a synthesized
scene, we set a virtual camera to capture multiple RGB-D images and
simultaneously record the camera poses. As it is a synthesized scene, we
can easily obtain ground-truth 2D semantic and instance segmentation
annotations. With the camera intrinsic, we can convert the RGB-D
images and semantic annotations to point clouds and transform them
to the world coordinate system using the camera extrinsics. Then,
by downsampling the point clouds with voxelization in the world
coordinate system, we can obtain the final point cloud data with
annotations.

Specifically, to generate a point cloud 𝑃𝐶𝑓𝑟𝑎𝑚𝑒 from the Depth
image 𝐼𝑑𝑒𝑝𝑡ℎ with the associated camera pose 𝑃𝑐𝑎𝑚, we utilize the
camera intrinsic matrix 𝐾 and the extrinsic matrix 𝑃𝑐𝑎𝑚 = [𝑅 ∣ 𝑡] and
convert the pixel coordinates to 3D points in the camera frame:

𝑃𝐶𝑓𝑟𝑎𝑚𝑒 = PointCloud(𝐼𝑑𝑒𝑝𝑡ℎ, 𝐾, 𝑃𝑐𝑎𝑚)

= {(𝑋, 𝑌 ,𝑍) ∣ 𝑋 =
𝐷 ⋅ (𝑢 − 𝑐𝑥)

𝑓𝑥
, 𝑌 =

𝐷 ⋅ (𝑣 − 𝑐𝑦)
𝑓𝑦

, 𝑍 = 𝐷}
(1)

𝑃𝐶world = 𝑃cam ⋅ 𝑃𝐶frame (2)

Here, (𝑢, 𝑣) represents the pixel coordinates in the Depth image, 𝐷
denotes the depth value, and (𝑐𝑥, 𝑐𝑦) are the principal points, while
(𝑓𝑥, 𝑓𝑦) represent the focal lengths. Then we concatenate these point
clouds into a combined point cloud and apply voxel sampling to
generate the final point cloud:

𝑃𝐶𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑 = 𝑓downsample

( 𝑁
⋃

𝑖=1
𝑃𝐶𝑤𝑜𝑟𝑙𝑑𝑖

)

(3)

Building upon the existing work in synthetic scene generation, we
acquired three large-scale point cloud datasets that correspond to the
three layout generation methods introduced previously.
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Table 2
Comparison of data-efficient instance segmentation results (AP@50) on ScanNet v2.
Models are initialized from scratch or from a model pre-trained on a synthetic or real
dataset. Numbers in parentheses show improvement over the baseline.

1% 5% 10% 20%

From scratch (Baseline) 7.1 23.1 41.9 50.5
Fine-tune from 3RScan 22.4 40.4 51.6 53.7

Fine-tune from SceneNetScan 21.1
(+14.0)

37.1
(+14.0)

49.6
(+7.7)

55.0
(+4.5)

Fine-tune from procTHORScan 19.6
(+12.5)

39.6
(+16.5)

52.8
(+10.9)

55.5
(+5.0)

Fine-tune from InteriorNetScan 24.1
(+17.0)

41.9
(+18.8)

54.4
(+12.5)

56.7
(+6.2)

SceneNetScan. SceneNetScan dataset is sourced from SceneNet RGB-
D [8]. The authors of SceneNet RGB-D synthesized 3D scenes by
randomly placing ShapeNet [17] object models on top of SceneNet [28]
3D house models. The camera trajectories were simulated to mimic
the process of handheld camera capture. Each scene produced a video
sequence containing 300 frames. We fused these RGB-D video streams
into scene point clouds, resulting in an indoor scene point cloud dataset
that contains 56 semantic categories and 17,687 scenes. Among them,
1000 scenes were used for validation, and the remaining data were used
for training.

procTHORScan. The procTHORScan dataset was obtained by capturing
frames on synthesized scenes from procTHOR [9]. The authors of
procTHOR designed a set of scene-setting rules to freely generate 3D
scenes to facilitate research on embodied tasks. We randomly selected
20 shooting angles to capture data in each scene, and then obtained
scene scan point clouds by fusing and downsampling multiple point
clouds. After scanning each scene three times, we ultimately obtained a
dataset containing 36,000 scans. In terms of categories, we selected and
merged 40 semantic categories. Based on the common sizes of objects,
we also divided them into three categories: large, medium, and small.
Therefore, this dataset can support future research on 3D small object
detection and segmentation.

InteriorNetScan. The authors of the InteriorNet [10] dataset utilized
3D synthetic scenes designed by interior designers to generate RGB-D
video streams, which were subsequently used as benchmarks for SLAM.
Compared to other datasets, it contains more human priors, and the
scene settings and model details are more realistic. By converting the
RGB-D image set into point clouds and fusing them, we can obtain a
point cloud dataset that contains 40 categories and 19,951 scenes.

Table 1 presents the statistical information of the three datasets.
It can be observed that the synthesized scene data we collected is
over ten times larger than existing commonly used datasets in terms of
data volume. Fig. 3 shows a comparison between our collected dataset
and the real dataset ScanNet. Next, we will experimentally verify the
effectiveness of synthesized data in aiding the real-scene point cloud
instance segmentation task.

3.3. Validation of dataset effectiveness

Synthesized scene data can generate large amounts of data at a low
cost, reducing the data demand for real scenes. Considering the cost of
data collection and annotation, this is crucial for practical applications
in industry and indoor scene robot understanding. To verify this, we
conducted data efficiency experiments on the real-world dataset Scan-
Net, using {1%/5%/10%/20%} of real training data for training and
evaluating the instance segmentation performance on the validation
set. Considering that we mainly focus on learning 3D geometric shapes
and that there are certain differences between synthesized and real data
in terms of texture, we only used the position information of point
154

clouds as feature input in our experiments. i
Table 3
Instance segmentation results on the ScanNet limited annotation benchmark (200
points). Models are initialized from scratch or from a model pre-trained on a synthetic
dataset (InteriorNetScan).

AP AP@50 AP@25

From scratch 28.9 48.8 63.1
Finetune InteriorNetScan 33.2 53.3 68.9

First, we conduct supervised pre-training on a large-scale synthetic
dataset to fully explore the geometric structure and contextual infor-
mation of the scenes. Subsequently, we utilize the learned model as
initialization and fine-tune it on a small amount of annotated real
data, transferring the knowledge learned from synthetic data to real
data. Table 2 shows the results of our method. Compared with the
baseline method that trains from scratch on limited real data only,
pre-training on all three datasets can significantly improve the instance
segmentation performance on real data. In particular, InteriorNetScan
shows the most remarkable improvement, with an increase of 18.8
oints in AP50 when using only 5% of the training data. Among the
hree synthetic datasets, InteriorNetScan shows the most significant im-
rovement, followed by procTHOR and SceneNetScan. This is because
nteriorNet is manually designed and contains the most human prior
nowledge, making it closest to real data.

To further demonstrate the effectiveness of constructing synthetic
ata, we compared it with another real dataset, 3RScan [16]. We
re-train on 3RScan and fine-tune the model on a small amount of
canNet v2 data. By comparing the results in Table 2, we found that
ur constructed synthetic data has surpassed the real data 3RScan.

In addition to the Limited Reconstruction benchmark, we also evalu-
ted the ScanNet Limited Annotation (LA) benchmark. The experimen-
al details are available in the supplementary materials. We report AP,
P@50, and AP@25 as evaluation metrics. The results of the experi-
ent are presented in Table 3. It is evident that instance segmentation
erformance improved after pretraining with synthetic data.

. Target-aware pre-training for transferring knowledge from syn-
hetic to real

The method introduced in the previous section is directly pre-
rained on the synthetic dataset and fine-tuned on the real dataset. We
onsider synthetic data as the source domain and real data as the target
omain. The problem is that pre-training on the source domain alone
gnores the target domain’s data distribution and domain differences,
eading to a suboptimal performance on real data.

In this section, we propose a pre-training method that incorporates
he unlabeled target domain data in the pre-training process. It enables
he model to acquire the geometric structures and scene contexts of
oint clouds from both the source and target domains and facilitates the
ransferability of the pre-trained model to the target domain task. The
ain insight is to allow the network to capture the data distribution

f the target domain during the pre-training process. We need to
nvolve the target domain data in the pre-training process and design

loss function to guide the network’s learning. To achieve this, we
enerate pseudo-labels for the unlabeled target domain data in the label
pace of the source domain and use this as supervised information for
seudo-training.

.1. Problem definition

The goal of this work is to achieve accurate instance segmentation
n a real-world collected point cloud dataset 𝑡 = {𝑢

𝑡 ,
𝑙
𝑡}, where

nly a small fraction of the data is labeled, 𝐷𝑢
𝑡 and 𝐷𝑙

𝑡 represent the
nlabeled and labeled part separately. To address the challenge of
carce annotations, we propose a method that leverages a large-scale,

𝑠 𝑠 𝑁𝑠
nexpensive, and readily available synthetic dataset 𝑠 = {(𝑷 𝑖 , 𝒀 𝑖 )}𝑖=1
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Fig. 4. The training process of our proposed method is composed of two phases: (a)
target-aware pertaining, (b) fine-tuning.

to fully learn the geometric structure of point clouds. The model trained
on both the labeled synthetic dataset 𝑠 and unlabeled real dataset
𝑢

𝑡 is used to initialize the model parameters and then fine-tuned on
the real data. Subscripts 𝑠 and 𝑡 denote the source domain and target
domain, respectively.

4.2. Method

The overall framework is shown in Fig. 4 and it is composed of
two phrases, i.e, target-aware pre-training and fine-tuning. During the
target-aware pre-training phase, we leverage both labeled data from
the source domain and unlabeled data from the target domain as input
to learn knowledge on both domains. This approach not only helps the
model learn the geometric structure and scene context of point clouds
in the source domain but also improves its generalization performance
in the target domain. To fully utilize the information from both labeled
and unlabeled data, we design two loss functions for network learning
on source and target domain data, respectively. In the source domain,
we use labeled data for supervised training to facilitate the learning of
knowledge in the source domain. Formally, for a point cloud 𝑷 𝑠

𝑖 with
𝑁 points, the model produces semantic scores 𝑺𝑪 𝑖 = {𝑠𝑐1,… , 𝑠𝑐𝑁} ∈
R𝑁×𝑁𝑠

𝑐𝑙𝑎𝑠𝑠 . We use the cross-entropy 𝑠
𝑠𝑒𝑚 for supervised training:

𝑠
𝑠𝑒𝑚 = 1

𝑁𝑠

𝑁𝑠
∑

𝑖=1
𝐶𝐸(𝑺𝑪 𝑖, 𝒀 𝑠

𝑖 ) (4)

where 𝐶𝐸(⋅,⋅) is the cross-entropy loss function. For the target domain,
we adopt a self-training learning approach to generate pseudo labels
of the source domain task and use them for supervised training to
facilitate the network learning of feature representation and data dis-
tribution in target domain point cloud data. We first generate pseudo
label 𝒀̂ 𝑠

𝑖 = {𝒀̂ 𝑠
𝑖,𝑗}

𝑁
𝑗=1 of source task for unlabeled target point cloud 𝑷 𝑡

𝑖
as follows:

𝒀̂ 𝑠
𝑖,𝑗 =

{

𝑎𝑟𝑔 𝑚𝑎𝑥(𝑺𝑪 𝑖,𝑗 ) 𝑚𝑎𝑥(𝑺𝑪 𝑖,𝑗 ) > 𝑇
−1 otherwise

(5)

where 𝑗 is the index of point and 𝑇 is a pre-defined confidence thresh-
old. The point is ignored if the probability is smaller than the threshold
and is assigned with the label −1. Then, pseudo-loss 𝑡→𝑠

𝑠𝑒𝑚 is used to
supervise the training on target data:

𝑡→𝑠
𝑠𝑒𝑚 = 1

𝑁𝑡

𝑁𝑡
∑

𝑖=1
𝐶𝐸(𝑺𝑪 𝑖, 𝒀̂

𝑠
𝑖 ) (6)

The final pre-training loss is calculated as  = 𝑠
𝑠𝑒𝑚+𝜆

𝑡→𝑠
𝑠𝑒𝑚 and 𝜆 is a

hyper-parameter to tune the influence factor of the target domain. After
the pre-training process, the model can be fine-tuned on the limited
labeled target point cloud data to yield a well-performing instance
segmentation model.
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4.3. Experimental settings

4.3.1. Datasets and metrics
The three synthetic datasets SceneNetScan, procTHORScan and In-

teriorNetScan collected in this work are used as the source domain
datasets. We use the ScanNet v2 [15] dataset as the target real dataset.
It contains 1613 scans and 20 classes. 10% of the entire 1201 scenes
in the training set for training and evaluate on the validation set. 𝐴𝑃 50
denotes the average precision with IoU threshold 50% and is used as
the evaluation metric of instance segmentation performance.

4.3.2. Implementation details
We use PointGroup [1] as the point cloud instance segmentation

method. The voxel size of the point cloud is set as 0.02 m. The model
is trained with an initial learning rate of 0.001 and decays with the
OneCycle policy [29]. AdamW [30] is used as the solver. In the target-
aware pre-training process, the hyper-parameter 𝜆 is set as 0 in the first
256 epochs and set as 1 in the following 128 epochs. In the fine-tuning
process, we initialize the model parameters with the pre-trained model
and train it for 512 epochs.

4.4. Evaluation results

We compare our method with a baseline approach which is solely
pre-trained on the synthetic dataset and is transferred to the down-
stream real dataset by fine-tuning. Table 4 shows that our method
outperforms it on all three synthetic datasets.

It is noteworthy that our method exhibits significant improvements
on categories with large differences between synthetic and real do-
mains. For instance, the shower curtain category, which is less fre-
quently present in the synthetic dataset, achieved performance gains
of 14.2, 4.0, and 10.1 over the baseline method on the SceneNetScan,
procTHORScan, and InteriorNetScan datasets, respectively. In contrast,
for categories with smaller differences between synthetic and real
domains, such as chair, toilet, and door, the adoption of target-aware
pre-training has little impact. This indicates that our method not only
learns rich feature representations on the source domain during pre-
training, but also fully utilizes the data from the target domain to
facilitate the model’s transferability to the target domain, thus allowing
for efficient and effective learning from limited labeled real data. We
also find that introducing unsupervised domain adaptation methods
such as Mix3D [31] during the pre-training process does not perform
well. Its AP@50 is 2.2 points lower than our approach (53.2 vs. 55.4).

We present in the first row of Table 4 the performance of the model
trained solely on 100% real data. As shown, our method combined with
a large synthetic dataset has enabled the 10% labeled data to achieve
performance similar to that of using 100% labeled data. This is highly
beneficial for practical applications to reduce expensive annotation
costs.

Our proposed method outperformed both the training-from-scratch
and fine-tuning approaches, yielding superior instance segmentation
results. To further demonstrate the effectiveness of our method, we
compare it with existing methods on ScanNet v2 validation set with
various ratios of labeled data. Table 5 shows that our method outper-
forms all existing methods by a large margin. This strongly indicates
that learning efficient and easily transferable feature representations
from synthetic data is an effective solution for addressing the scarcity
of target annotated data. In Fig. 5, we show the visualization results of
our method on ScanNet v2.

5. Conclusion

In this work, we investigate the possibility of constructing po-
int cloud datasets using synthetic scenes. We have collected three



Pattern Recognition Letters 179 (2024) 151–157X. Wu et al.
Table 4
3D instance segmentation results on ScanNet v2 validation set. Limited data (10%) is used for training. We first pre-train on three synthetic datasets using the baseline method
and our target-aware pre-training method and report their performances on the real dataset.

Method Synthetic dataset Real dataset AP50 bath. bed. bkshf. cab. chair. cntr. curt. desk. door. ofrun. pic. fridg. showr. Sink Sofa Table Toilet wind.

Supervised training None ScanNet (100%) 59.9 83.9 74.9 45.4 53.5 86.7 29.7 50.6 46.1 41.9 58.2 40.1 49.6 68.9 70.8 62.4 71.9 98.3 44.8
Supervised training None ScanNet (10%) 42.6 76.9 70.2 51.1 29.0 82.8 13.5 36.6 21.0 25.2 41.7 0.0 1.8 57.8 23.2 64.7 55.0 89.0 27.0

Fine-tuning SceneNetScan ScanNet (10%) 49.6 67.4 72.7 50.9 39.3 87.9 22.8 41.7 20.0 34.0 47.5 25.5 17.7 62.9 48.5 72.9 54.6 94.7 31.9
Ours SceneNetScan ScanNet (10%) 52.7 80.5 75.8 62.2 36.7 87.2 24.6 40.4 26.9 32.7 49.3 23.4 27.8 77.1 49.8 69.1 52.0 94.4 37.9

Fine-tuning procTHORScan ScanNet (10%) 52.8 77.4 74.1 47.6 43.5 85.2 22.2 36.5 39.5 35.1 43.5 31.5 30.5 68.7 62.0 64.9 62.9 91.2 33.6
Ours procTHORScan ScanNet (10%) 53.0 77.3 71.2 46.9 43.6 86.4 22.4 42.5 34.2 35.6 43.8 33.7 30.1 72.7 51.8 78.3 58.8 92.9 32.0

Fine-tuning InteriorNetScan ScanNet (10%) 54.4 86.9 65.1 49.1 46.2 85.2 28.7 46.1 33.7 42.5 44.7 37.8 32.4 65.2 57.7 63.1 56.1 96.0 43.3
Ours InteriorNetScan ScanNet (10%) 55.4 87.0 69.6 54.5 45.1 86.6 28.5 37.9 41.4 41.3 40.0 40.1 29.3 75.3 55.3 64.5 59.9 99.8 41.0
Table 5
Comparison of data-efficient instance segmentation results (AP@50) with various ratios
of labeled data on ScanNet v2 validation set. Our method based on InteriorNetScan
outperforms all existing methods.

Method 1% 5% 10% 20%

PointContrast [4] 12.5 35.4 43.9 49.5
CSC [3] 13.0 36.7 45.0 50.3
TWIST [6] 17.1 44.1 49.7 52.9
Ours 25.3 45.1 55.4 57.0

Fig. 5. Comparison of qualitative instance segmentation results on the ScanNet v2
dataset. Different colors represent separate instances. Areas circled in red show poorer
predictions for the compared methods.

large-scale synthetic point cloud datasets using different scene layout
generation methods, which are more than ten times larger than existing
datasets. The learned feature representations from these datasets can be
efficiently applied to real point cloud tasks, consequently decreasing
the need for actual annotated data. Considering the domain differences
between real and synthetic data, we propose a target domain-aware
pre-training method that fully explores the geometric shape knowledge
of synthetic and real data during pre-training and performs better
when transferred to real data. Furthermore, the synthetic datasets we
collected may also be used for other tasks, such as self-supervised
contrastive learning and sim2real research in the point cloud domain.
Additionally, multiple synthetic datasets can serve as benchmarks for
multi-domain knowledge transfer of point cloud, promoting research
and practical applications in the field.
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