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Abstract

Catastrophic forgetting, the main challenge of Class In-

cremental Learning, is closely related to the classifier’s bias

due to imbalanced data, and most researchers resort to em-

pirical techniques to remove the bias. Such anti-bias tricks

share many ideas with the field of Class Imbalanced Learn-

ing, which encourages us to reflect on why these tricks work,

and how we can design more principled solutions from a

different perspective. In this paper, we comprehensively an-

alyze the connections and seek possible collaborations be-

tween these two fields, i.e. Class Incremental Learning and

Class Imbalanced Learning. Specifically, we first provide

a panoramic view of recent bias correction tricks from the

perspective of handling class imbalance. Then, we show

that an adapted post-scaling technique which originates

from Class Imbalanced Learning is on par with or even out-

performs SOTA Class Incremental Learning method. Visu-

alization via violin plots and polar charts further sheds light

on how SOTA methods address the class imbalance problem

from a more intuitive geometric perspective. These findings

may encourage further infiltration between the two closely

connected fields, but also raise concerns about whether it is

correct that Class Incremental Learning degenerates into a

class imbalance problem.

1. Introduction

Incremental Learning, a prerequisite ability for open

world applications such as service robots to continually ac-

quire new knowledge in the ever-changing environment, re-

ceives increasing attention from both academia and indus-

try. Despite its importance in open world recognition [3],

it remains rather difficult to design well-acknowledged aca-

demic settings that emulate the natural incremental scenar-

ios, let alone devise algorithms to solve them. To facilitate

academic research, three simplified incremental settings are

proposed and accepted by researchers [23, 61, 41]1: Task

Incremental, Domain Incremental, and Class Incremental

Learning. Among them, Class Incremental Learning is

the most popular and promising one, and the reasons are

two-fold: for one thing, it assumes no task boundaries and

the classifier needs to recognize all seen classes, which is

more realistic than Task Incremental Learning; for another,

Class Incremental Learning is more challenging than the

other settings based on the performance, and there is still a

large gap between SOTAs and the performance upperbound,

which leaves room for further improvement.

One notorious phenomenon in Class Incremental Learn-

ing is catastrophic forgetting [44], which implies that the

model may completely forget old knowledge when learning

new information. Such a forgetting phenomenon is usually

reflected by the acute drops of accuracies on old classes, or

the classifier’s bias towards old classes2. Note that learn-

ing incrementally does not necessarily lead to catastrophic

forgetting, since storing all historical data and training the

model with them will incur little or no forgetting. The

main cause of forgetting is attributed to the common as-

sumption in Incremental Learning that the memory is lim-

ited, thus only a small portion of old samples can be stored,

which makes it resemble a class imbalance problem. With-

out proper treatment, the model may suffer a lot from the

imbalance and the performance might be largely degraded.

From a higher view, the battle against class imbalance

in machine learning is a wider topic with a long his-

tory [25, 19], since the class imbalance or long-tail distri-

bution is an ubiquitous problem [74, 63, 14]. Although

important, techniques that handle class imbalance in the

deep learning era are empirically designed and often seen

as “tricks” especially in AI challenges [57]. However, the

last few years have witnessed rising fields such as Class

1Strictly speaking, [41] uses New Instances (NI) to indicate DIL, Multi-

Task-NC for TIL, and New Instances and Classes (NIC) resembles CIL.
2Here the word bias means that the decision boundary is closer to the

centroid of the minority class, which is in line with [64].



Imbalanced Learning and Long-Tailed Classification which

seek principled ways to tackle class imbalance of deep mod-

els. The resurgence of these fields encourages us to reflect

upon the progress of Class Incremental Learning from a

novel perspective, and more importantly to see if inspira-

tions could be drawn from these fields in helping design

more effective anti-forgetting techniques.

Motivated by these goals, in this paper we compre-

hensively analyze the connections and seek possible col-

laborations between these two closely related fields, i.e.

Class Incremental Learning and Class Imbalanced Learn-

ing. Specifically, we first concretely clarify that the tech-

niques in SOTA Class Incremental Learning methods share

similar ideas with Class Imbalanced Learning (Sec. 3.1).

Then, we show that an adapted post-scaling technique

which originates in Class Imbalanced Learning (Sec. 3.2)

can obtain on-par or even better result with Class Incremen-

tal Learning methods (Sec. 4.2). Finally, qualitative analy-

ses help us understand why post-scaling works, and how it

correlates with a SOTA method MDFCIL [71] from a geo-

metric view (Sec. 4.3). Based on these findings, we provide

our thoughts on further collaborations of these two learning

paradigms and concerns over the recent progress of Class

Incremental Learning (Sec. 4.4).

2. Related Works

Class Incremental Learning (CIL). Class Incremen-

tal Learning [53], a thriving subfield in Incremental Learn-

ing [59, 10], has been attracting increasing attention in the

computer vision community. To alleviate catastrophic for-

getting [44], the main challenge in this field, additional

memory must be leveraged for memory replay. The mem-

ory generally falls into two categories: episodic memory

which holds a small number of old exemplars [53, 5, 65,

71], and generative memory which stores generative mod-

els such as GANs or VAEs [58, 17, 66, 49]. Since genera-

tive memory usually needs longer training time and higher

memory footprint, episodic memory based approaches are

more promising. However, an underlying problem with

episodic memory is that the ratio of the number of old ex-

emplars to that of new samples might be very high, result-

ing in severe class imbalance. Thus, techniques to address

class imbalance must be leveraged. Interestingly, the de-

velopment of Class Incremental Learning in recent years is

almost a history of finding solutions to address class imbal-

ance [53, 5, 2, 65, 71]. In this paper we reflect upon these

approaches from the view of Class Imbalanced Learning.

Class Imbalanced Learning (CIL). Class imbalance or

long-tail distribution is ubiquitous, and the battle against it

has a long history [26, 64, 4]. In recent years, we have wit-

nessed a popular trend of independent fields such as Class

Imbalanced Learning [29, 16] and Long-Tailed Classifica-

tion [28, 72], where the former has a much longer his-

tory [73]. A major finding in Class Imbalanced Learning

is that the learned classifier might be biased towards the mi-

nority class [64], since the variance in the minority class is

often underestimated due to insufficient samples. Accord-

ing to [4], methods for addressing class imbalance can be

divided into two main categories: data-level methods and

classifier-level methods. Data-level methods operate on the

training set and change the class distribution, and examples

are under-sampling [26], over-sampling [39], SMOTE [7]

etc. Classifier-level methods keep the training set intact

and adjust the training or inference algorithms, and exam-

ples are cost-sensitive learning (a.k.a. re-weighting), post-

scaling [36, 4] etc. Since Class Incremental Learning also

exhibits a problem of biasing towards old classes, existing

techniques in Class Imbalanced Learning can also be ap-

plied in Class Incremental Learning.

3. Connections between Two CILs

Class Incremental Learning (CIL) and Class Imbalanced

Learning (CIL) have exactly the same acronym. For dis-

ambiguation, we use CIncL and CImbL to denote them

respectively hereinafter. Apart from the similarity in their

names literally, there are more connections between them

from a technical point of view. In this section, we first elab-

orate on the relationship between the technical designs of

SOTA CIncL methods and similar CImbL ideas, then show

that CImbL techniques can be also applied in CIncL.

3.1. CIncL exhibits Class Imbalance

In the typical CIncL setting, a bounded memory to hold

old exemplars is maintained [53]. At each incremental

phase, the method has to train the model with a combina-

tion of old exemplars and new samples. Since the memory

is limited, the number of old exemplars for each class is

usually much lower than that of a new class, resulting in se-

vere class imbalance. In the following paragraphs, we will

elaborate on the relationship between anti-bias techniques

in recent CIncL works and ideas in CImbL. The general

pipeline for these methods is shown in Fig. 1.

iCaRL [53]. The core building block in handling class

imbalance is the Nearest Class Mean (NCM) classifier, and

we can understand its anti-imbalance property from two as-

pects: (1) From the perspective of non-parametric classi-

fier, NCM is a distance-based classification method simi-

lar to k-NN. The difference is that k-NN also has a biasing

problem [43, 40], however, NCM alleviates this problem by

aggregating the information of an arbitrary number of sam-

ples into a single prototype, which resembles a prototype

generation (a type of under-sampling) in nearest neighbor

approaches [60]. Therefore, other classic prototype genera-

tion methods such as LVQ [31] could also be leveraged as

alternatives; (2) NCM can be seen as a Bayesian method

which assumes that each class obeys a multivariate Gaus-
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Figure 1. The general pipeline for many Class Incremental Learning methods from time t to t + 1. On the left, it shows the exemplar

management process, where the memory has a fixed budget of N evenly allocated for each old class. On the right, it depicts the process of

model training given the imbalanced training set, where the knowledge transfer from the old model is optional for some methods [2, 52].

sian distribution with an identical isotropic covariance ma-

trix (i.e. Σc = σ2I). The identity of the covariance matrices

may remedy the class imbalance issue, and the isotropy fur-

ther eases the computation. The readers could refer to the

mathematical derivations in the supplementary material.

End-to-End Incremental Learning (EEIL) [5]. The

technique to address class imbalance is the balanced fine-

tuning in the 2nd stage as indicated by [5]. From a CImbL’s

view, the combination of regular training on the imbalanced

dataset and balanced fine-tuning resembles a two-phase

training strategy [15]. The main difference is that [15]

adopts a balanced training in the 1st stage, because it wants

most of the capacity (i.e. feature extractor) to account for

the diversity in a balanced way for all classes. For the 2nd

stage, it trains on imbalanced dataset with the feature ex-

tractor fixed, making the output layer reflect the natural fre-

quencies of the classes in the data.

Large-Scale Incremental Learning (LSIL) [65]. LSIL

might be one of the few works that leverage validation sets

in CIncL. The idea is to learn a linear model to correct the

bias of the output logits for the new classes, which is sim-

ilar to a classic probability calibration method called Platt

scaling [51]. The difference is that LSIL is a softmax ver-

sion instead of sigmoid version. For more recent probability

calibration methods, the readers could refer to [35, 12, 34].

Incremental Learning with Dual Memory (IL2M) [2].

IL2M stores the average confidence of the model at each

incremental phase and the logits (before softmax) of each

class when the corresponding class is first added for learn-

ing. At test time, it rectifies the scores based on the above-

mentioned statistics if a test sample is predicted as new

classes. Judging from the characteristics of IL2M, it also

resembles a probability calibration method [51, 69, 70] ex-

cept that the parameters are directly estimated rather than

learned given the validation set.

Maintaining Discrimination and Fairness in Class In-

cremental Learning (MDFCIL) [71]. MDFCIL is moti-

vated by the empirical findings [13] that the norms of the

weights in the final fully connected layers are related to the

numbers of training samples for each class. By normalizing

the weights to have similar norms after training, the biases

induced by different numbers of samples can be removed.

Interestingly, a similar approach appears in a recent CImbL

paper with the name τ -normalized classifier [28]. The un-

derlying reason for different norms of the weights might be

that they can reflect the complexity of the decision bound-

aries [48, 47]. Since more samples generally lead to more

complex intra-variation, the decision boundaries might be

more complicated, making the corresponding norms larger.

GDumb [52]. GDumb maintains a greedy balancing

sampler which always holds a balanced training set for all

classes, and uses these samples to train the model whenever

needed. The greedy balancing sampler also resembles an

under-sampling strategy in CImbL, which means that only

a small portion of new class samples are kept. The down-

side is that a large number of new class samples are wasted.

So far we have elaborated on the characteristics of anti-

bias techniques in recent CIncL methods, and a panoramic

view is provided in Table 1.

3.2. CImbL avails CIncL

Commonly used CImbL techniques such as re-weighting

and re-sampling (e.g. under-sampling, over-sampling) can

be easily applied in CIncL. In this section, we are more in-



Table 1. Anti-bias techniques of recent Class Incremental Learning (CIncL) methods and their corresponding ideas in Class Imbalanced

Learning (CImbL). Methods are ordered chronologically.

Method Anti-bias Technique(s)
Corresponding Idea in CImbL

Which Phase
Level Technique

iCaRL [53] NCM classifier Classifier Prototype generation Test

EEIL [5] Balanced fine-tuning Data Two-phase training Train

LSIL [65] Bias correction Classifier Probability calibration Train

IL2M [2] Rescaling Classifier Probability calibration Test

MDFCIL [71] Weight aligning Classifier N/A Test

GDumb [52] Greedy balancing sampler Data Under-sampling Train

terested in adapting a more theory-driven and simple way

called post-scaling3 to the field of CIncL.

Let us denote the feature extractor as f . The weight and

bias in the fully connected layer are W and b. Then, based

on the assumption that neural networks estimate posterior

probabilities if softmax cross-entropy is used [54], the pos-

terior probability of class c when the model converges is:

ptr(c|x) =
exp(WT

c f(x) + bc)∑
i exp(W

T
i f(x) + bi)

=
ptr(x|c)ptr(c)∑
i ptr(x|i)ptr(i)

(1)

The second line in Eq. 1 is obtained via Bayesian the-

orem on ptr(c|x). The subscript tr stands for the training

set (ts for the test set). It is natural to assume that the sam-

ples of the training or the test set are obtained by the same

generation process, thus we have ptr(x|c) = pts(x|c). Con-

sequently, the posterior probability of class c at test time is:

pts(c|x) =
pts(x|c)pts(c)∑
i pts(x|i)pts(i)

=
ptr(x|c)ptr(c)×

pts(c)
ptr(c)

∑
i ptr(x|i)ptr(i)×

pts(i)
ptr(i)

(2)

By applying Eq. 1 into Eq. 2, the prediction function is:

pts(c|x) =
exp(WT

c f(x) + bc)×
pts(c)
ptr(c)

∑
i exp(W

T
i f(x) + bi)×

pts(i)
ptr(i)

=
exp{WT

c f(x) + bc + log( pts(c)
ptr(c)

)}
∑

i exp{W
T
i f(x) + bi + log( pts(i)

ptr(i)
)}

(3)

Eq. 3 indicates that we do not need to change the soft-

max function, but only need to add an extra bias term to the

logit for each class. In our implementation, we introduce a

3“Post” means that it functions at test phase. “Scaling” means that the

network outputs are multiplied by certain numbers. Although the adapted

form might be not in line with the literal name, we still use post-scaling in

this paper since the modification over the original version is tiny.

non-learnable post-scaling layer at the end of the network,

whose role is simply to add log( pts(c)
ptr(c)

) for each class. In

the equation above, pts(c) can be set to be 1
C

where C is

the number of classes, since it is equiprobable that a sample

belongs to each class at test time. ptr(c) is simply estimated

by the ratio of the sample number of class c to the total

number of samples in the training set. From the perspective

of prior shift [32] (a type of dataset shift [46]) where the

prior probabilities of source and target domain are differ-

ent, the post-scaling method above tries to compensate for

prior shift and let the classifier adapt well to the test data.

Note that there are assumptions that may influence the

performance: (1) The estimation of ptr(c) might be incor-

rect, because the number of samples might not reliably re-

flect the prior probability. Inspired by [8], one may use the

effective number of samples to estimate the prior. (2) Eq. 1

holds when the model converges (i.e. the cross entropy loss

is low on the training set). Therefore, this method might

not work well when the model underfits (e.g. less number

of epochs); (3) ptr(x|c) = pts(x|c) might not hold due to

insufficient samples, as noted by a recent CImbL paper [24].

4. Experiment

4.1. Experimental Setups

Datasets. We use CIFAR-100 [33] and Group Ima-

geNet [55]. Group ImageNet is a 100-class ImageNet

subset which covers 10 super-categories and each super-

category has exactly 10 sub-categories. Also, it is down-

sampled to 64×64 for faster evaluation. The details of

Group ImageNet is shown in the supplementary material.

Evaluation Metrics. We use the top-1 accuracy in the

final class increment as other CIL papers do.

Methods. As for CIncL, we compare Learning with-

out Forgetting (LwF) [38], iCaRL [53], End-to-End In-

cremental Learning (EEIL) [5], Large Scale Incremental

Learning (LSIL) [65], Maintaining Discrimination and Fair-

ness in Class Incremental Learning (MDFCIL) [71], and

GDumb [52]. Note that we remove exclusive techniques in

these papers such as intense data augmentation and gradient

noise in EEIL [5], because we want to fairly compare their



anti-imbalance techniques. As for CImbL-inspired meth-

ods, we compare random under-sampling, random over-

sampling, SMOTE [7], ADASYN [18], cluster centroids

that uses k-means and k-medoids, re-weighting, and the

adapted post-scaling mentioned in Sec. 3.2.

Implementations. The codes are implemented via Ten-

sorflow 2.1 [1] 4. An Adam optimizer [30] is adopted for

all experiments, and its learning rate is determined via a

grid search. For CIFAR-100, we use a LeNet-like network

and ResNet-34 [21]. For Group ImageNet, we use ResNet-

18 [21] and MobileNetV2 [56]. The number of training

epochs is set to 70, and the learning rate is multiplied by

0.1 at epoch 49 and 63. Random exemplar selection is

adopted, since other specially designed selection strategies

do not have substantial improvement over random selec-

tion [66, 6, 27]. As for the techniques in CImbL, most of

them are provided by Python module imblearn [37]. More

details can be found in the supplementary material.

4.2. Quantitative Results

The final accuracies of methods on these two datasets

are summarized in Table 2. Note that the accuracies might

not be precisely in line with other papers, since the goal

here is to fairly compare the anti-bias techniques in these

methods. From the results, it can be observed that more re-

cent CIncL approaches generally yield better performance.

It is also noteworthy that the bias correction techniques in

these methods can boost the performance, and some im-

provements are very impressive judging from the accuracies

before and after “/” in Table 2! It indicates that handling

class imbalance is very necessary if one wants to largely

boost the classification performance.

As for CIncL methods, MDFCIL [71] is the most effec-

tive one which outperforms others in most cases. LwF [38]

is much lower than others, which is reasonable since it in-

corporates no anti-imbalance technique, making it vulnera-

ble to class imbalance. iCaRL [53] is better than LwF, but

there is still a large gap between iCaRL and SOTA meth-

ods. The reason might be that the prototype is generated

by samples of the corresponding class only. The prototype

can well represent the given class, but it lacks discriminative

power and its superiority might mainly lie in handling ad-

versarial attacks in open-set recognition [3, 67]. EEIL [5]

performs better than iCaRL, because it trains the network in

an end-to-end fashion, which might alleviate the incompat-

ibility between the feature extractor and the classifier. The

superiority of LSIL [65] over EEIL is not so clear, and the

reason might be that some exemplars are not used to train

the base model, but belong to the validation set in LSIL.

IL2M [2] performs less satisfactory, and the main reason is

that it lacks the distillation loss adopted in other approaches.

4The codes are at http://vipl.ict.ac.cn/resources/

codes or https://github.com/TonyPod/Two-CILs

In our implementation, we find that the distillation loss is

important for the old model to transfer knowledge to the

new model. GDumb [52] is much unsatisfactory because it

transfers no knowledge from the previous model (i.e. train-

ing from scratch), and it discards a lot of samples in the

greedy balancing sampler. The accuracy 1% for MobileNet

is not a mistake, since we find that MobileNet is difficult

to train for almost all base learning rates. Advanced tech-

niques in GDumb (e.g. SGDR [42], cutmix [68] etc.) and

more epochs (i.e. 256) in the original paper could give bet-

ter results, but that is not the main focus of this paper.

As for CImbL-inspired techniques, post-scaling per-

forms pretty well and outperforms MDFCIL in some cases.

The other techniques (i.e. re-weighting and re-sampling)

all perform less satisfactory, and such results are in line

with [72] which assumes that re-sampling or re-weighting

may damage the representation. It is also noteworthy that

advanced over-sampling techniques such as SMOTE [7]

and ADASYN [18] have no substantial improvement over

the naive random over-sampling. The reason might be that

we perform SMOTE or ADASYN in the image space rather

than feature space. Since the generated samples may not

exist in the real world, it might have a negative effect on the

performance. Such a phenomenon can also be seen in the

comparison between random under-sampling and cluster

centroids (k-means), since the samples generated by k-

means might also be unrealistic. To resolve this problem,

by using k-medoids instead of k-means, we can observe a

marginal but consistent improvement since the samples gen-

erated by k-medoids all belong to the original dataset.

Apart from accuracies, we are also interested in the effi-

ciency of these methods. To evaluate it, we recorded the av-

erage running time of each class incremental phase in these

methods, and summarized them in Table 3. Note that the

statistics might be inaccurate, since the running time is cor-

related with the CPU/GPU overload at that time. However,

they can roughly reflect the efficiency of these methods.

Among them, LSIL and SMOTE are most time-consuming.

As for LSIL, the reason might be that it needs twice the

number of epochs to learn the bias correction parameters.

In practice, we notice that such a large number of epochs is

unnecessary, and reducing it might yield similar results. As

for SMOTE, it will continually select neighboring images to

synthesize new ones, which will need much computation.

Judging from both performance and efficiency, we

recommend that the practitioners should consider MD-

FCIL and post-scaling first for CIncL.

4.3. Further Analyses

So far, we find that the technique post-scaling in Sec. 3.2

and weight aligning in MDFCIL [71] are very effective.

Here, we want to understand their characteristics more in-

tuitively from a geometric view.



Table 2. Final accuracies of methods on different datasets. CIncL stands for Class Incremental Learning methods, and CImbL indicates

Class Imbalanced Learning inspired methods. For methods with an extra bias correction stage, the accuracies before and after the bias

correction are separated by a slash (/). Each result is obtained by averaging the accuracies under 5 class orders on CIFAR-100 and 3 class

orders on Group ImageNet (excluding lowerbound and upperbound).

Method
CIFAR-100 Group ImageNet

LeNet ResNet32 MobileNet ResNet18

Lowerbound 8.88 9.08 9.26 9.36

CIncL

LwF† (ECCV’16) [38] 30.04 37.22 26.69 34.45

iCaRL (CVPR’17) [53] 29.30/35.10 37.40/42.95 24.67/34.05 33.98/42.01

EEIL (ECCV’18) [5] 31.15/37.61 38.34/43.27 31.74/39.98 35.93/46.13

LSIL (CVPR’19) [65] 36.49/39.04 35.24/41.38 18.71/39.49 28.22/36.77

IL2M (ICCV’19) [2] 27.61/26.71 34.22/35.27 24.27/27.38 30.58/36.23

MDFCIL (CVPR’20) [71] 30.49/39.94 39.63/47.96 17.78/34.33 31.93/47.19

GDumb (ECCV’20) [52] 21.09 19.41 1.00 19.97

CImbL

Re-weighting 33.29 37.23 31.60 38.08

Random over-sampling 34.53 35.12 27.69 35.85

SMOTE 33.85 35.71 27.61 34.95

ADASYN 33.77 35.93 26.68 34.07

Random under-sampling 31.06 35.13 25.95 37.28

Cluster centroids (k-means) 28.23 31.85 21.01 32.70

Cluster centroids (k-medoids) 31.32 35.80 26.65 37.64

Post-scaling 31.58/38.68 38.92/44.44 30.55/40.50 37.09/48.36

Upperbound 58.98 66.85 68.82 72.74

Table 3. Average running times of methods for a single class incremental phase on different datasets (in seconds). The organization of the

table is similar to Table 2. Each result is an average based on 5 class orders on CIFAR-100 and 3 class orders on Group ImageNet.

Method
CIFAR-100 Group ImageNet

LeNet ResNet32 MobileNet ResNet18

CIncL

LwF† (ECCV’16) [38] 329.20 522.96 1507.75 1204.74

iCaRL (CVPR’17) [53] 441.82 546.44 1750.17 1421.89

EEIL (ECCV’18) [5] 641.00 876.38 2655.51 2207.73

LSIL (CVPR’19) [65] 2278.35 2453.36 5576.40 4565.65

IL2M (ICCV’19) [2] 323.00 483.82 1634.51 1097.80

MDFCIL (CVPR’20) [71] 334.19 520.64 1655.27 1266.25

GDumb (ECCV’20) [52] 194.39 258.02 448.06 295.15

CImbL

Re-weighting 341.50 557.00 1535.39 1218.52

Random over-sampling 1067.41 1954.07 8926.25 6530.99

SMOTE 1207.14 2138.63 8012.42 6201.43

ADASYN 1221.74 2005.56 1877.00 1550.95

Random under-sampling 203.77 255.79 343.31 384.83

Cluster centroids (k-means) 1083.24 1113.02 2629.24 2354.59

Cluster centroids (k-medoids) 195.65 280.40 587.23 413.90

Post-scaling 340.58 500.42 1434.07 1331.76

Post-scaling. The idea of post-scaling is to translate the

decision boundary towards the majority class along the nor-

mal vector. To facilitate analysis, we only consider one old

class (minority class) and one new class (majority class),

the decision boundary between them can be determined by

assuming that their probabilities after softmax to be equal:

exp(WT
minf(x) + bmin)∑

i exp(W
T
i f(x) + bi)

=
exp(WT

majf(x) + bmaj)
∑

i exp(W
T
i f(x) + bi)

(4)

The definition of f , W and b is the same as Sec. 3.2. Ob-

viously, the denominator can be canceled out. Also, since

exp(·) is monotonous, Eq. 4 can be further derived as:



(WT
min −W

T
maj)f(x) + (bmin − bmaj) = 0 (5)

Eq. 5 implies that the decision boundary is linear with

respect to the feature space. Consequently, we can project

f(x) onto the normal vector of the decision boundary, and

its “distance” to the decision boundary can be obtained by5:

d(x) =
(WT

min −W
T
maj)f(x) + (bmin − bmaj)

‖WT
min −WT

maj‖
(6)

Based on Eq. 6, we can obtain the distributions of d(x)
for samples of these two classes and draw two-dimension

violin plots [22] (Fig. 2). By comparing training all and

test, we can find that the variance of the minority class be-

comes smaller, because only a small number of exemplars

are stored and the variance is underestimated. By compar-

ing training and test, we can find that the decision boundary

before post-scaling actually fits training pretty well, but it is

not suitable for test. After post-scaling, the decision bound-

ary moves slightly towards the majority class and can better

separate the samples of these two classes.

Weight aligning. If there is no bias term in the final

fully connected layer, then weight aligning tries to rotate

the decision boundary towards the majority class around the

origin. To understand it, we show the decision boundary in

a two-dimensional polar space. The original boundary is:

W
T
minf(x) = W

T
majf(x) (7)

Using the property of inner product, Eq. 7 is derived as:

‖Wmin‖ cos(θ
∗) = ‖Wmaj‖ cos(β − θ∗) (8)

In Eq. 8, β is the angle between Wmin and Wmaj , and

θ∗ (θ∗ ∈ [−π
2 ,

π
2 ]) is the angle between Wmin and the deci-

sion boundary. θ∗ can be solved via trigonometric formulas:

θ∗ = arctan(
‖Wmin‖

‖Wmaj‖ sin(β)
− cot(β)) (9)

We can obtain the decision boundary after weight align-

ing in a similar way. Note that θ∗ + kπ(k ∈ Z) is also

a decision boundary in the polar coordinate system due to

periodicity. Then, we want to project a sample f(x) onto

the subspace spanned by Wmin and Wmaj . Using Gram-

Schmidt orthogonalization, we can construct the following

two normal basis vectors:

e1 =
Wmin

‖Wmin‖

e2 =
Wmaj − (Wmaj · e1)e1
‖Wmaj − (Wmaj · e1)e1‖

(10)

5The absolute value of Eq. 6 is the distance. We remove | · | to denote

which side of the point lies with respect to the decision boundary.

Consequently, for each f(x) we can get its projected vec-

tor represented by e1 and e2, and the angle in the polar

space θ (θ ∈ [−π, π]) can be determined by atan2 provided

by many Python packages such as NumPy [62].

θ = atan2(f(x) · e2, f(x) · e1) (11)

Based on Eq. 11, all samples can be represented as an-

gles and we can show their distributions in a polar plot

(Fig. 3). In Fig. 3b, It can be observed that the decision

boundary can separate the old exemplars and new samples

pretty well. However, the range of angles in the old class

(i.e. minority class) is underestimated (Fig. 3a). By ro-

tate the decision boundary anti-clockwise, the biasing phe-

nomenon due to class imbalance can be alleviated, and the

new decision boundary is much better (Fig. 3c).

Summary. Although we only analyze the characteristics

of two classes, the post-scaling or weight aligning process

on the multi-class classifier can be seen as a re-adjustment

of all two-class decision boundaries. After that, the un-

derestimated variances of old classes are compensated (i.e.

those of new classes are shrinked), whether by altering the

distances in post-scaling or angles in weight aligning.

4.4. Discussions

So far, we have shown that CIncL and CImbL are highly

correlated. The merit is that techniques in CImbL can be

applied in CIncL as well. Note that we have only visited

a small portion of CImbL approaches, and there might be

more principled and effective approaches left untouched.

Generalized Low-Shot Learning (GLSL)6 [11, 9, 50] which

also exhibits a class imbalance problem could be another

field we can draw inspirations from. From the results in

Sec. 4.2, it can be found that weight aligning [71] in CIncL

and post-scaling in CImbL are two effective methods with

little computation overhead. There are many connections

between these two methods: Weight aligning multiplies a

scalar to the logits based on empirical findings, whereas

post-scaling adds a scalar to the logits based on theoreti-

cal derivation; Post-scaling translates the decision boundary

towards the majority class, whereas weight aligning rotates

the decision boundary (Sec. 4.3). This is a small step to-

wards bridging the gap between CIncL and CImbL, and we

can foresee more collaborations between these two fields.

Note that although we revolve around class incremental sce-

narios, there is still a need for techniques in CImbL for more

flexible incremental learning settings [45, 20].

However, the downside is that CIncL seems to degener-

ate to a CImbL problem. If so, what is the exclusive prob-

lem left for CIncL? If the numbers of samples are equal

for all classes, would recent CIncL methods still have large

6Also known as Generalized Few-Shot Learning (GFSL).
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Figure 2. Violin plots of the post-scaling method in the final class increment on CIFAR-100 (left) and Group ImageNet (right). The y-axis

represents d(x). Along the x-axis, there are three different splits of the dataset: training all (all training samples, including the discarded

ones), training (exemplars for the old class plus the new class samples), test (the test samples). The red solid line (i.e. d(x) = 0) and the

red dashed line are the decision boundary trained with the training split before and after post-scaling respectively. The two classes consist

of an old class (in blue) and a new class (in orange). The number before the class name in the legend is the index in the class order.
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Figure 3. Polar charts of the weight aligning method in the final class increment on Group ImageNet. There are three sub-graphs indicating

three different splits of the dataset similar to Fig. 2. Each sub-graph depicts the histograms of θ (Eq. 9) of the samples in the corresponding

split of the dataset. Note that θ is in [−π, π]. To make it agree with the range of the angular axis [0, 2π], we add π to θ. Since some detailed

information might be not visible via histograms, θ of individual samples are also shown beside the largest circle (magnify for better view).

The red solid line and the red dashed line are the decision boundary before and after weight aligning respectively. The two classes consist

of an old class (in blue) and a new class (in orange). More results can be found in the supplementary material.

difference in performance? What if no old samples are dis-

carded? Also, is it questionable that addressing class im-

balance is equivalent to avoiding catastrophic forgetting?

These questions are challenging and deserve more attention.

5. Conclusion

In this paper, we comprehensively analyze the con-

nections between Class Incremental Learning (CIncL) and

Class Imbalanced Learning (CImbL). Specifically, we show

that existing techniques in recent CIncL methods share

many ideas with CImbL. Also, by introducing common

approaches that originate in CImbL, we find that a sim-

ple post-scaling technique achieves on-par or better per-

formance than SOTA in CIncL with little memory usage.

Visualization via violin charts or polar charts offer geo-

metric views about how bias correction works, and shed

lights on the underlying similarity between two effective

methods that originate in two fields: post-scaling in CImbL

and weight aligning in CIncL. Future works might be en-

couraging more collaborations between these two learning

paradigms. We should also reflect upon what the exclusive

problem left for CIncL is, and whether catastrophic forget-

ting and class imbalance are closely related.
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